Samuel Park , Pilhyeon Ju , Taehoon Park , Richard I. Foster , GyoSoon Kim , Sungyeol Choi
{"title":"Thermal-hydraulic analysis of sequential disposal scenarios in a spent nuclear fuel repository","authors":"Samuel Park , Pilhyeon Ju , Taehoon Park , Richard I. Foster , GyoSoon Kim , Sungyeol Choi","doi":"10.1016/j.pnucene.2025.105662","DOIUrl":null,"url":null,"abstract":"<div><div>In order to address issues related to Spent Nuclear Fuel (SNF), nations using nuclear energy have considered disposal of SNF in a Deep Geological Repository (DGR) located 500m below ground as most promising option. The Korean government has considered the multi-barrier disposal concept developed by Finland and Sweden and has developed a Korean Reference disposal System (KRS). The main consideration of KRS is how effectively it can isolate SNF from ecosystem, including considerations for thermal, mechanical and material degradations such as illitization of bentonite and canister corrosion. Among these criteria, temperature plays a significant role in maintaining repository integrity, influencing both mechanical and material degradation behavior. Consequently, various trials, including analytical and numerical solutions, have been employed to estimate temperature evolutions. However, a significant temperature difference between the analytical and numerical solutions arises due to the simulation region. Specifically, the analytical solution considers a multi-canister geometry, while current numerical solutions only account for a single-canister due to computational cost. As a result, the single canister model does not accurately reflect heat flux from the adjacent canisters. In this study, a quantitative comparison between analytical and numerical solutions using multi-canister geometries was conducted, and the results showed that the analytical and numerical solutions exhibit similar results. Additionally, four different SNF disposal methods were investigated to identify the optimized disposal method in terms of peak temperature. According to the results, it is suggested that the plop-plop method is the optimized disposal method.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"181 ","pages":"Article 105662"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025000605","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to address issues related to Spent Nuclear Fuel (SNF), nations using nuclear energy have considered disposal of SNF in a Deep Geological Repository (DGR) located 500m below ground as most promising option. The Korean government has considered the multi-barrier disposal concept developed by Finland and Sweden and has developed a Korean Reference disposal System (KRS). The main consideration of KRS is how effectively it can isolate SNF from ecosystem, including considerations for thermal, mechanical and material degradations such as illitization of bentonite and canister corrosion. Among these criteria, temperature plays a significant role in maintaining repository integrity, influencing both mechanical and material degradation behavior. Consequently, various trials, including analytical and numerical solutions, have been employed to estimate temperature evolutions. However, a significant temperature difference between the analytical and numerical solutions arises due to the simulation region. Specifically, the analytical solution considers a multi-canister geometry, while current numerical solutions only account for a single-canister due to computational cost. As a result, the single canister model does not accurately reflect heat flux from the adjacent canisters. In this study, a quantitative comparison between analytical and numerical solutions using multi-canister geometries was conducted, and the results showed that the analytical and numerical solutions exhibit similar results. Additionally, four different SNF disposal methods were investigated to identify the optimized disposal method in terms of peak temperature. According to the results, it is suggested that the plop-plop method is the optimized disposal method.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.