Kangrui Hu , Zhihao Zhou , Haofeng Li , Jijun Xiao , Yun Shen , Ke Ding , Tingting Zhang , Guangji Wang , Haiping Hao , Yan Liang
{"title":"Regulation of histidine metabolism by Lactobacillus Reuteri mediates the pathogenesis and treatment of ischemic stroke","authors":"Kangrui Hu , Zhihao Zhou , Haofeng Li , Jijun Xiao , Yun Shen , Ke Ding , Tingting Zhang , Guangji Wang , Haiping Hao , Yan Liang","doi":"10.1016/j.apsb.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing evidence has underscored the significance of post-stroke alterations along gut–brain axis, while its role in pathogenesis and treatment of ischemic stroke (IS) remains largely unexplored. This study aimed to elucidate the therapeutic effects and action targets of <em>Panax notoginseng saponins</em> (PNS) on IS and explore a novel pathogenesis and treatment strategy of IS <em>via</em> profiling the microbial community and metabolic characteristics along gut–brain axis. Our findings revealed for the first time that the therapeutic effect of PNS on IS was microbiota-dependent. Ischemia/reperfusion (I/R) modeling significantly down-regulated <em>Lactobacilli</em> in rats, and PNS markedly recovered <em>Lactobacilli</em>, particularly <em>Lactobacillus reuteri</em> (<em>L.Reu</em>). Metabolomics showed a significant reduction in serum histidine (HIS) in clinical obsolete IS patients and rehabilitation period I/R rats. Meanwhile, the <em>L.Reu</em> colonization in I/R rats exhibited significant neuroprotective activity and greatly increased HIS in serum, gut microbiota, and brain. Moreover, exogenous HIS demonstrated indirect neuroprotective effects through metabolizing to histamine. Notably, vagus nerve severance in I/R rats was performed to investigate HIS's neuroprotective mechanism. The results innovatively revealed that PNS could promote HIS synthesis in gut by enhancing <em>L.Reu</em> proportion, thereby increasing intracerebral HIS through peripheral pathway. Consequently, our data provided novel insights into HIS metabolism mediated by <em>L.Reu</em> in the pathogenesis and treatment of IS.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 1","pages":"Pages 239-255"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524004039","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence has underscored the significance of post-stroke alterations along gut–brain axis, while its role in pathogenesis and treatment of ischemic stroke (IS) remains largely unexplored. This study aimed to elucidate the therapeutic effects and action targets of Panax notoginseng saponins (PNS) on IS and explore a novel pathogenesis and treatment strategy of IS via profiling the microbial community and metabolic characteristics along gut–brain axis. Our findings revealed for the first time that the therapeutic effect of PNS on IS was microbiota-dependent. Ischemia/reperfusion (I/R) modeling significantly down-regulated Lactobacilli in rats, and PNS markedly recovered Lactobacilli, particularly Lactobacillus reuteri (L.Reu). Metabolomics showed a significant reduction in serum histidine (HIS) in clinical obsolete IS patients and rehabilitation period I/R rats. Meanwhile, the L.Reu colonization in I/R rats exhibited significant neuroprotective activity and greatly increased HIS in serum, gut microbiota, and brain. Moreover, exogenous HIS demonstrated indirect neuroprotective effects through metabolizing to histamine. Notably, vagus nerve severance in I/R rats was performed to investigate HIS's neuroprotective mechanism. The results innovatively revealed that PNS could promote HIS synthesis in gut by enhancing L.Reu proportion, thereby increasing intracerebral HIS through peripheral pathway. Consequently, our data provided novel insights into HIS metabolism mediated by L.Reu in the pathogenesis and treatment of IS.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.