Catalytic Hydrodesulfurization of Thiophene, Dibenzothiophene and 4,6-Dimethyldibenzothiophene on a CoMoS Catalyst

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-02-12 DOI:10.1007/s10562-025-04953-6
M. K. Prabhu, J. N. Louwen, E. T. C. Vogt, I. M. N. Groot
{"title":"Catalytic Hydrodesulfurization of Thiophene, Dibenzothiophene and 4,6-Dimethyldibenzothiophene on a CoMoS Catalyst","authors":"M. K. Prabhu,&nbsp;J. N. Louwen,&nbsp;E. T. C. Vogt,&nbsp;I. M. N. Groot","doi":"10.1007/s10562-025-04953-6","DOIUrl":null,"url":null,"abstract":"<div><p>Previous studies have employed density functional theory (DFT) modeling to investigate hydrodesulfurization (HDS) pathways for heavy aromatic sulfides, typically focusing on hydrogenation to assist in C-S bond cleavage on both pristine and promoted MoS₂ catalysts. These investigations, which primarily examine the reduced Mo- and sulfur-terminated edges of MoS₂ slabs, generally categorize the reaction pathways into two types: direct desulfurization (DDS) and hydrogenation-desulfurization (HYD). Traditionally, these models assume that C-S bond cleavage occurs through interactions with edge sulfur atoms, with less attention given to the role of promoter metals like Co. However, our recent work indicates that Co atoms on the S-edges of MoS₂ slabs may play a crucial role in activating and dissociating C-S bonds, particularly through an α-carbon transfer. This process has been identified as key in the desulfurization of small thiols like methanethiol, prompting further investigation into its relevance for aromatic thiols such as thiophene, dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (DMDBT). In the DFT calculations presented in this article, we demonstrate that the activation barrier for C-S bond cleavage to Co remains consistent at 1.0-1.1 eV/atom for the unsubstituted aromatic sulfides with a higher 1.67 eV for DMDBT. This oxidative addition mechanism of Co is strongly favored by the presence of dissociated hydrogen on adjacent sites and the aromatic nature of the molecule being desulfurized, while self-desulfurization through this pathway is found to be unfavorable. Our findings provide new insights into the chemistry of promoter atoms in the HDS of heavy aromatic sulfides.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10562-025-04953-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04953-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have employed density functional theory (DFT) modeling to investigate hydrodesulfurization (HDS) pathways for heavy aromatic sulfides, typically focusing on hydrogenation to assist in C-S bond cleavage on both pristine and promoted MoS₂ catalysts. These investigations, which primarily examine the reduced Mo- and sulfur-terminated edges of MoS₂ slabs, generally categorize the reaction pathways into two types: direct desulfurization (DDS) and hydrogenation-desulfurization (HYD). Traditionally, these models assume that C-S bond cleavage occurs through interactions with edge sulfur atoms, with less attention given to the role of promoter metals like Co. However, our recent work indicates that Co atoms on the S-edges of MoS₂ slabs may play a crucial role in activating and dissociating C-S bonds, particularly through an α-carbon transfer. This process has been identified as key in the desulfurization of small thiols like methanethiol, prompting further investigation into its relevance for aromatic thiols such as thiophene, dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (DMDBT). In the DFT calculations presented in this article, we demonstrate that the activation barrier for C-S bond cleavage to Co remains consistent at 1.0-1.1 eV/atom for the unsubstituted aromatic sulfides with a higher 1.67 eV for DMDBT. This oxidative addition mechanism of Co is strongly favored by the presence of dissociated hydrogen on adjacent sites and the aromatic nature of the molecule being desulfurized, while self-desulfurization through this pathway is found to be unfavorable. Our findings provide new insights into the chemistry of promoter atoms in the HDS of heavy aromatic sulfides.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Liquid Phase Nitration of Benzene to Nitrobenzene Using a Mesoporous MoO3/Nb2O5 Nanocatalyst Single-Atom Catalysis for CO Combustion in Automotive Exhaust: A DFT Study Enhanced Catalytic Performance of Egyptian Red Clay Modified with Zirconia Nanoparticles for Methanol Dehydration to Dimethyl Ether g-C3N4 Enhanced Fe3+/ Fe2+ Cycling to Activate PMS for Pharmaceuticals Degradation Under Solar Irradiation Ru Distribution and Activity of Ru/C Catalyst for Continuous Hydrogenation of 3,5-dimethylpyridine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1