{"title":"Green Synthesis of Ag/SiO2 Catalyst for its Application in CO-Oxidation","authors":"Subhasis Pati, Ashok Jangam","doi":"10.1007/s10562-025-04942-9","DOIUrl":null,"url":null,"abstract":"<div><p>Silver nanoparticles are highly active for low-temperature CO oxidation reactions. Herein, we report the synthesis of Ag nanoparticles dispersed over mesoporous SiO<sub>2</sub> via a green approach. The Ag nanoparticles were dispersed over mesoporous silica using bay leaf extract to prepare a 2% Ag/SiO<sub>2</sub> (G) catalyst. The formation of the catalyst was confirmed by UV-Vis spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The activity of the 2% Ag/SiO<sub>2</sub> (G) catalyst was tested for CO oxidation reaction in a packed bed reactor. The catalyst showed excellent activity for low-temperature CO oxidation, and 100% conversion was achieved at 125 <sup>o</sup>C. The higher conversion and stable activity for 100 h is ascribed to the strong metal support interaction, homogenous dispersion of nano-particles and formation of easily reducible metal oxides. The strong metal support interaction is confirmed by temperature programmed reduction analysis.</p></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10562-025-04942-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04942-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silver nanoparticles are highly active for low-temperature CO oxidation reactions. Herein, we report the synthesis of Ag nanoparticles dispersed over mesoporous SiO2 via a green approach. The Ag nanoparticles were dispersed over mesoporous silica using bay leaf extract to prepare a 2% Ag/SiO2 (G) catalyst. The formation of the catalyst was confirmed by UV-Vis spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The activity of the 2% Ag/SiO2 (G) catalyst was tested for CO oxidation reaction in a packed bed reactor. The catalyst showed excellent activity for low-temperature CO oxidation, and 100% conversion was achieved at 125 oC. The higher conversion and stable activity for 100 h is ascribed to the strong metal support interaction, homogenous dispersion of nano-particles and formation of easily reducible metal oxides. The strong metal support interaction is confirmed by temperature programmed reduction analysis.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.