Theoretical Insights of the Non-Rigid Behavior of Benzophenone by Franck-Condon Factors Approach

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2025-02-12 DOI:10.1002/qua.70019
Rafael Flores-Larrañaga, María Eugenia Castro, Alejandro Palma, Francisco J. Melendez
{"title":"Theoretical Insights of the Non-Rigid Behavior of Benzophenone by Franck-Condon Factors Approach","authors":"Rafael Flores-Larrañaga,&nbsp;María Eugenia Castro,&nbsp;Alejandro Palma,&nbsp;Francisco J. Melendez","doi":"10.1002/qua.70019","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Benzophenone is a molecule with several extremely relevant characteristics, widely used as a type-2 photoinitiator due to its unique electronic properties and a very efficient intersystem crossing. In general, benzophenone can absorb directly to S<sub>1</sub> or S<sub>2</sub> states, but S<sub>0</sub> → S<sub>1</sub> transition is weak. Also, benzophenone has symmetric activity of the torsional modes of the phenyl groups, suggesting that is a non-rigid molecule. This work has two fundamental purposes. The first is to examine the ground state (S<sub>0</sub>) and first singlet excited state (S<sub>1</sub>) of benzophenone using TD-DFT methodology to generate the potential energy surface (PES) to understand its non-rigid behavior; and the second, to examine the Franck-Condon factors (FC factors) between the transition S<sub>0</sub> → S<sub>1</sub>. From our results, the most accurate was the hybrid functional PBE0. From the PES analysis of S<sub>0</sub> and S<sub>1</sub> states, we observe that several minima were located and that they are separated by relative low energy barriers. The global minimum of S<sub>0</sub> is found at <i>θ</i><sub>1</sub>/<i>θ</i><sub>2</sub> = 28.15° and for S<sub>1</sub> at <i>θ</i><sub>1</sub>/<i>θ</i><sub>2</sub> = 20.71°. Interestingly, the PES of S<sub>1</sub> state shows a very extensive area of minimum energy and a local minimum located at <i>θ</i><sub>1</sub> = 90.71°/<i>θ</i><sub>2</sub> = 0.71°. From the vibrational spectra, we observe two intense signals that correspond to the symmetric phenyl twisting of normal mode 2 (2<sup>3</sup> and 2<sup>4</sup>), and a combination between the symmetric hydrogen scissoring of 44<sup>1</sup> and 2<sup>3</sup>. As the vibronic spectrum tells, this transition is forbidden by the orbital theory but it is electronically allowed. Also, from the Duschinksy matrix, we observe a high mixing of vibrational modes.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70019","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Benzophenone is a molecule with several extremely relevant characteristics, widely used as a type-2 photoinitiator due to its unique electronic properties and a very efficient intersystem crossing. In general, benzophenone can absorb directly to S1 or S2 states, but S0 → S1 transition is weak. Also, benzophenone has symmetric activity of the torsional modes of the phenyl groups, suggesting that is a non-rigid molecule. This work has two fundamental purposes. The first is to examine the ground state (S0) and first singlet excited state (S1) of benzophenone using TD-DFT methodology to generate the potential energy surface (PES) to understand its non-rigid behavior; and the second, to examine the Franck-Condon factors (FC factors) between the transition S0 → S1. From our results, the most accurate was the hybrid functional PBE0. From the PES analysis of S0 and S1 states, we observe that several minima were located and that they are separated by relative low energy barriers. The global minimum of S0 is found at θ1/θ2 = 28.15° and for S1 at θ1/θ2 = 20.71°. Interestingly, the PES of S1 state shows a very extensive area of minimum energy and a local minimum located at θ1 = 90.71°/θ2 = 0.71°. From the vibrational spectra, we observe two intense signals that correspond to the symmetric phenyl twisting of normal mode 2 (23 and 24), and a combination between the symmetric hydrogen scissoring of 441 and 23. As the vibronic spectrum tells, this transition is forbidden by the orbital theory but it is electronically allowed. Also, from the Duschinksy matrix, we observe a high mixing of vibrational modes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Theoretical Insights of the Non-Rigid Behavior of Benzophenone by Franck-Condon Factors Approach DFT Investigations of Non-Toxic Perovskites RbZnX3 (X = F, Cl, and Br): Analyzing the Structural, Electrical, Optical, Mechanical, and Thermodynamic Properties for Suitable Optoelectronic Applications Structures and Electronic Properties of TMPb16−/0/+ (TM = Sc, Y, Ti, Zr, Hf) Clusters Issue Information Unraveling Surface Chemistry of SnO2 Through Formation of Charged Oxygen Species and Oxygen Vacancies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1