Highly Efficient Numerical Method for Modeling Mofs Containing Transition Metal Ions

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2025-02-12 DOI:10.1002/jcc.27546
D. D. Raenko, A. L. Tchougreeff
{"title":"Highly Efficient Numerical Method for Modeling Mofs Containing Transition Metal Ions","authors":"D. D. Raenko,&nbsp;A. L. Tchougreeff","doi":"10.1002/jcc.27546","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Employing a group-function based semiempirical approach, a new program package <span></span><math>\n <semantics>\n <mrow>\n <mi>ΣHΘΩ</mi>\n </mrow>\n <annotation>$$ \\varSigma H\\varTheta \\varOmega $$</annotation>\n </semantics></math> (<i>seethoo</i>), targeted to modeling of metal-organic frameworks (MOFs) containing transition metal ions (TMIs) with open <i>d</i>-shells is developed. In this proof of concept study it is shown that the <span></span><math>\n <semantics>\n <mrow>\n <mi>ΣHΘΩ</mi>\n </mrow>\n <annotation>$$ \\varSigma H\\varTheta \\varOmega $$</annotation>\n </semantics></math> package has potential to accurately compute <i>d</i>-shell low-spin (LS) —high-spin (HS) gaps and charge distributions in MOFs in <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <msup>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>.</mo>\n <mn>33</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$$ O\\left({N}^{1.33}\\right) $$</annotation>\n </semantics></math> time with reasonable accuracy. The calculations were carried out for a variety of MOFs and MOF-like systems containing doubly and triply charged Mn, Fe, Co and Ni ions. For Fe-containing systems, parameters of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>57</mn>\n </mrow>\n </msup>\n <mtext>Fe</mtext>\n </mrow>\n <annotation>$$ {}^{57}\\mathrm{Fe} $$</annotation>\n </semantics></math> Mössbauer spectra were also computed. For the test runs, the results reasonably agree with available experimental data up to errors introduced by use of the CNDO parametrization in the test manner.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27546","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Employing a group-function based semiempirical approach, a new program package ΣHΘΩ $$ \varSigma H\varTheta \varOmega $$ (seethoo), targeted to modeling of metal-organic frameworks (MOFs) containing transition metal ions (TMIs) with open d-shells is developed. In this proof of concept study it is shown that the ΣHΘΩ $$ \varSigma H\varTheta \varOmega $$ package has potential to accurately compute d-shell low-spin (LS) —high-spin (HS) gaps and charge distributions in MOFs in O N 1 . 33 $$ O\left({N}^{1.33}\right) $$ time with reasonable accuracy. The calculations were carried out for a variety of MOFs and MOF-like systems containing doubly and triply charged Mn, Fe, Co and Ni ions. For Fe-containing systems, parameters of 57 Fe $$ {}^{57}\mathrm{Fe} $$ Mössbauer spectra were also computed. For the test runs, the results reasonably agree with available experimental data up to errors introduced by use of the CNDO parametrization in the test manner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information Theoretical Insights Into Structures and U–C Bonding in the Uranium Benzyl Derivatives Scaling of the GROMACS Molecular Dynamics Code to 65k CPU Cores on an HPC Cluster Mechanistic Study of the Carbonylation of Aziridines to β-Lactams: Alkylation, Solvent and Molecular NaBr and MgO Clusters Catalysts Effects Evaluation of Density-Functional Tight-Binding Methods for Simulation of Protic Molecular Ion Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1