New insights into the Scolytus multistriatus, Geosmithia spp., and Ophiostoma novo-ulmi association

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2025-02-12 DOI:10.1002/ecs2.70145
Alessia L. Pepori, Nicola Luchi, Francesco Pecori, Massimo Faccoli, Alberto Santini
{"title":"New insights into the Scolytus multistriatus, Geosmithia spp., and Ophiostoma novo-ulmi association","authors":"Alessia L. Pepori,&nbsp;Nicola Luchi,&nbsp;Francesco Pecori,&nbsp;Massimo Faccoli,&nbsp;Alberto Santini","doi":"10.1002/ecs2.70145","DOIUrl":null,"url":null,"abstract":"<p>Dutch elm disease (DED) is a destructive tracheomycosis caused by <i>Ophiostoma novo-ulmi</i>, an ascomycete that is devastating natural elm populations throughout Europe, North America, and part of Asia. The fungus is mainly spread by elm bark beetles (EBBs) (Coleoptera: Curculionidae, Scolytinae) that complete their life cycle between healthy and diseased elms. It has recently been shown that certain fungi of the genus <i>Geosmithia</i>, vectored by bark beetles, are involved in the DED pathosystem. Not only it has been observed that the two fungi share the same habitat in the host plant and during each developmental stage of the insect, but also there appears to be a parasitic association between them. By analyzing the presence and quantity of the two fungi on the bodies of elm beetles by a qPCR duplex TaqMan assay, this work aimed to explore the dynamic of the relationship among the adults of <i>Scolytus multistriatus</i>, <i>O. novo-ulmi</i>, and <i>Geosmithia</i> spp. at sites characterized by different DED severity levels during the elm growing season. We observed that, regardless of the epidemiological conditions, both fungi are always present on adult flickering insects. The proportion of the two fungal populations varies among sampling sites, with <i>Geosmithia</i> spp. being predominant in the non-epidemic sites. The hyperparasitism of <i>Geosmithia</i> toward <i>O. novo-ulmi</i> within this tri-trophic system should be investigated further for potential use as biological control agent.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70145","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70145","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dutch elm disease (DED) is a destructive tracheomycosis caused by Ophiostoma novo-ulmi, an ascomycete that is devastating natural elm populations throughout Europe, North America, and part of Asia. The fungus is mainly spread by elm bark beetles (EBBs) (Coleoptera: Curculionidae, Scolytinae) that complete their life cycle between healthy and diseased elms. It has recently been shown that certain fungi of the genus Geosmithia, vectored by bark beetles, are involved in the DED pathosystem. Not only it has been observed that the two fungi share the same habitat in the host plant and during each developmental stage of the insect, but also there appears to be a parasitic association between them. By analyzing the presence and quantity of the two fungi on the bodies of elm beetles by a qPCR duplex TaqMan assay, this work aimed to explore the dynamic of the relationship among the adults of Scolytus multistriatus, O. novo-ulmi, and Geosmithia spp. at sites characterized by different DED severity levels during the elm growing season. We observed that, regardless of the epidemiological conditions, both fungi are always present on adult flickering insects. The proportion of the two fungal populations varies among sampling sites, with Geosmithia spp. being predominant in the non-epidemic sites. The hyperparasitism of Geosmithia toward O. novo-ulmi within this tri-trophic system should be investigated further for potential use as biological control agent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
New insights into the Scolytus multistriatus, Geosmithia spp., and Ophiostoma novo-ulmi association Consumer- and seaweed-specific impacts of invasion-mediated changes to detrital subsidies on rocky shores Pygoscelis penguins prefer different oceanographic and terrestrial habitats during the austral summer Associating cultivars or species with complementary traits is key for enhancing aphid control through bottom-up effects Preferred nectar sources for the monarch butterfly (Danaus plexippus plexippus) along the Great Plains migration pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1