{"title":"Hunger Games: A Modern Battle Between Stress and Appetite","authors":"Whitnei Smith, Estefania P. Azevedo","doi":"10.1111/jnc.70006","DOIUrl":null,"url":null,"abstract":"<p>Stress, an evolutionarily adaptive mechanism, has become a pervasive challenge in modern life, significantly impacting feeding-relevant circuits that play a role in the development and pathogenesis of eating disorders (EDs). Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, disrupts specific neural circuits, and dysregulates key brain regions, including the hypothalamus, hippocampus, and lateral septum. These particular structures are interconnected and key in integrating stress and feeding signals, modulating hunger, satiety, cognition, and emotional coping behaviors. Here we discuss the interplay between genetic predispositions and environmental factors that may exacerbate ED vulnerability. We also highlight the most commonly used animal models to study the mechanisms driving EDs and recent rodent studies that emphasize the discovery of novel cellular and molecular mechanisms integrating stress and feeding signals within the hippocampus–lateral septum–hypothalamus axis. In this review, we discuss the role of gut microbiome, an emerging area of research in the field of EDs and unanswered questions that persist and hinder the scientific progress, such as why some individuals remain resilient to stress while others become at high risk for the development of EDs. We finally discuss the need for future research delineating the impact of specific stressors on neural circuits, clarifying the relevance and functionality of hippocampal–septal–hypothalamic connectivity, and investigating the role of key neuropeptides such as CRH, oxytocin, and GLP-1 in human ED pathogenesis. Emerging tools like single-cell sequencing and advanced human imaging could uncover cellular and circuit-level changes in brain areas relevant for feeding in ED patients. Ultimately, by integrating basic and clinical research, science offers promising avenues for developing personalized, mechanism-based treatments targeting maladaptive eating behavior for patients suffering from EDs.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stress, an evolutionarily adaptive mechanism, has become a pervasive challenge in modern life, significantly impacting feeding-relevant circuits that play a role in the development and pathogenesis of eating disorders (EDs). Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, disrupts specific neural circuits, and dysregulates key brain regions, including the hypothalamus, hippocampus, and lateral septum. These particular structures are interconnected and key in integrating stress and feeding signals, modulating hunger, satiety, cognition, and emotional coping behaviors. Here we discuss the interplay between genetic predispositions and environmental factors that may exacerbate ED vulnerability. We also highlight the most commonly used animal models to study the mechanisms driving EDs and recent rodent studies that emphasize the discovery of novel cellular and molecular mechanisms integrating stress and feeding signals within the hippocampus–lateral septum–hypothalamus axis. In this review, we discuss the role of gut microbiome, an emerging area of research in the field of EDs and unanswered questions that persist and hinder the scientific progress, such as why some individuals remain resilient to stress while others become at high risk for the development of EDs. We finally discuss the need for future research delineating the impact of specific stressors on neural circuits, clarifying the relevance and functionality of hippocampal–septal–hypothalamic connectivity, and investigating the role of key neuropeptides such as CRH, oxytocin, and GLP-1 in human ED pathogenesis. Emerging tools like single-cell sequencing and advanced human imaging could uncover cellular and circuit-level changes in brain areas relevant for feeding in ED patients. Ultimately, by integrating basic and clinical research, science offers promising avenues for developing personalized, mechanism-based treatments targeting maladaptive eating behavior for patients suffering from EDs.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.