Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-02-11 DOI:10.1111/tpj.17248
Xiaomeng Zhang, Xinquan Tian, Junyu Luo, Xiaoyang Wang, Shoupu He, Gaofei Sun, Ruidan Dong, Panhong Dai, Xiao Wang, Zhaoe Pan, Baojun Chen, Daowu Hu, Liru Wang, Baoyin Pang, Aishuang Xing, Guoyong Fu, Baoquan Wang, Jinjie Cui, Lei Ma, Xiongming Du
{"title":"Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum","authors":"Xiaomeng Zhang,&nbsp;Xinquan Tian,&nbsp;Junyu Luo,&nbsp;Xiaoyang Wang,&nbsp;Shoupu He,&nbsp;Gaofei Sun,&nbsp;Ruidan Dong,&nbsp;Panhong Dai,&nbsp;Xiao Wang,&nbsp;Zhaoe Pan,&nbsp;Baojun Chen,&nbsp;Daowu Hu,&nbsp;Liru Wang,&nbsp;Baoyin Pang,&nbsp;Aishuang Xing,&nbsp;Guoyong Fu,&nbsp;Baoquan Wang,&nbsp;Jinjie Cui,&nbsp;Lei Ma,&nbsp;Xiongming Du","doi":"10.1111/tpj.17248","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene <i>GhUGT88F3</i> for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in <i>GhUGT88F3</i> in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor <i>GhMYB330</i> was found to positively regulate <i>GhUGT88F3</i> expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both <i>GhUGT88F3</i> and <i>GhMYB330</i> overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17248","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene GhUGT88F3 for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in GhUGT88F3 in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor GhMYB330 was found to positively regulate GhUGT88F3 expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both GhUGT88F3 and GhMYB330 overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
At the grass roots: non-destructive root phenotyping using X-ray computed tomography Posttranslational regulation of plant membrane transporters Genetic dissection of internode length confers improvement for ideal plant architecture in maize Haplotype-resolved genome and population genomics provide insights into dioscin biosynthesis and evolutionary history of the medicinal species Dioscorea nipponica DREPP protein StPCaP1 facilitates the cell-to-cell movement of Potato virus Y and Potato virus S by inhibiting callose deposition at plasmodesmata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1