UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes

Ruhan Zhao, Ziyu Feng, Rongqian Kuang, Zhijian Li, Ke Lu, Hong Zhang, Songtao Lu
{"title":"UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes","authors":"Ruhan Zhao,&nbsp;Ziyu Feng,&nbsp;Rongqian Kuang,&nbsp;Zhijian Li,&nbsp;Ke Lu,&nbsp;Hong Zhang,&nbsp;Songtao Lu","doi":"10.1002/cnl2.194","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) are considered one of the most viable options for large-scale energy storage applications due to their high theoretical capacity and abundant reserves. However, issues such as dendritic growth and water-induced corrosion reaction of the zinc anode have hindered their commercialization. To address these challenges, in situ generated multifunctional poly(caffeic acid) (PCA) interface with confined Cu sites and abundant oxygen-containing groups was constructed on the surface of the zinc metal anode via ultraviolet (UV) treatment. The smooth and compact PCA effectively prevents the zinc anode from corrosion by active water in the electrolyte, while the synergies of zincophilic groups and the confined copper sites constitute 3D ion channels of PCA skeleton accelerates the migration of Zn<sup>2+</sup> and enhance deposition kinetics, thus lowering Zn<sup>2+</sup> desolvation energy. The symmetric cells using the PCA-modified Zn anode demonstrated stable cycling for over 2500 h and 2200 h at current densities of 1.0 and 5.0 mA cm<sup>−2</sup>, respectively, much better than controls. Additionally, the assembled PCA@Zn//I<sub>2</sub> full cell enabled continuous cycling over 1000 cycles at a current density of 1.0 A g<sup>−1</sup> and presented reliable operation over 100 cycles in a pouch cell configuration.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) are considered one of the most viable options for large-scale energy storage applications due to their high theoretical capacity and abundant reserves. However, issues such as dendritic growth and water-induced corrosion reaction of the zinc anode have hindered their commercialization. To address these challenges, in situ generated multifunctional poly(caffeic acid) (PCA) interface with confined Cu sites and abundant oxygen-containing groups was constructed on the surface of the zinc metal anode via ultraviolet (UV) treatment. The smooth and compact PCA effectively prevents the zinc anode from corrosion by active water in the electrolyte, while the synergies of zincophilic groups and the confined copper sites constitute 3D ion channels of PCA skeleton accelerates the migration of Zn2+ and enhance deposition kinetics, thus lowering Zn2+ desolvation energy. The symmetric cells using the PCA-modified Zn anode demonstrated stable cycling for over 2500 h and 2200 h at current densities of 1.0 and 5.0 mA cm−2, respectively, much better than controls. Additionally, the assembled PCA@Zn//I2 full cell enabled continuous cycling over 1000 cycles at a current density of 1.0 A g−1 and presented reliable operation over 100 cycles in a pouch cell configuration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trifunctional Nature of Heteroatom (B, N, S, O)-Doped Waste Diesel Soot: Turning Pollutants Into Potential Energy Catalysts for HER, OER, and ORR UV-Polymerized Zincophilic Ion-Enhanced Interfacial Layer With High Ion Transference Number for Ultrastable Zn Metal Anodes Issue Information N-, S-Codoped Porous Carbon With Trace Single-Atom Fe for Enhanced Oxygen Reduction With Robust Poison Resistance and Efficient Rechargeable Zinc–Air Battery Front Cover: Carbon Neutralization, Volume 4, Issue 2, March 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1