Effects of Dietary Phosphatidylcholine Supplementation on Growth Performance, Antioxidant Capacity, Fatty Acid Composition, and Lipid Metabolism of Juvenile Eriocheir sinensis-Fed Different Oil Sources

IF 3 2区 农林科学 Q1 FISHERIES Aquaculture Nutrition Pub Date : 2025-02-12 DOI:10.1155/anu/5627355
Zhideng Lin, Xiaodan Wang, Xianyong Bu, Qincheng Huang, Han Wang, Erchao Li, Jianguang Qin, Liqiao Chen
{"title":"Effects of Dietary Phosphatidylcholine Supplementation on Growth Performance, Antioxidant Capacity, Fatty Acid Composition, and Lipid Metabolism of Juvenile Eriocheir sinensis-Fed Different Oil Sources","authors":"Zhideng Lin,&nbsp;Xiaodan Wang,&nbsp;Xianyong Bu,&nbsp;Qincheng Huang,&nbsp;Han Wang,&nbsp;Erchao Li,&nbsp;Jianguang Qin,&nbsp;Liqiao Chen","doi":"10.1155/anu/5627355","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The present study investigates the effects of dietary phosphatidylcholine (PC) deficiency and its addition on growth and physiological and biochemical indicators of juvenile <i>Eriocheir sinensis</i> under different oil sources. There were no significant differences in the growth and feed utilization between the vegetable oils and fish oil (FO) groups under PC-devoid conditions. In contrast, the FO and perilla oil (PO) groups showed better growth-promoting effects and higher feed utilization than the safflower oil (SO) and olive oil (OO) groups under 3% PC-added condition. Both dietary PC and oil sources (FO or PO) could inhibit lipid accumulation of the whole crab, and dietary PC also observably facilitated whole-body protein deposition. In addition, dietary FO and PO increased the burden of the antioxidant system and the risk of lipid peroxidation in juvenile <i>E. sinensis</i>. Meanwhile, diets supplemented with PC effectively alleviated oxidative stress and lipid peroxidation caused by dietary FO and PO. The composition of fatty acids in muscle and hepatopancreas was positively associated with that in diets. Compared with SO and OO, FO and PO significantly reduced the lipid deposition in the hepatopancreas at 3% PC supplementation, possibly because FO and PO formed new physiological-active PC contained n-3 polyunsaturated fatty acids (PUFAs) with dietary PC through activating PC remodeling reaction, and promoting fatty acid utilization, and finally inhibiting the lipid accumulation in the hepatopancreas. This study indicates that FO and PO are better lipid sources (LSs) for <i>E. sinensis</i>, providing alternative oil sources in the crab diet in combination with PC supplementation.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/5627355","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/5627355","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the effects of dietary phosphatidylcholine (PC) deficiency and its addition on growth and physiological and biochemical indicators of juvenile Eriocheir sinensis under different oil sources. There were no significant differences in the growth and feed utilization between the vegetable oils and fish oil (FO) groups under PC-devoid conditions. In contrast, the FO and perilla oil (PO) groups showed better growth-promoting effects and higher feed utilization than the safflower oil (SO) and olive oil (OO) groups under 3% PC-added condition. Both dietary PC and oil sources (FO or PO) could inhibit lipid accumulation of the whole crab, and dietary PC also observably facilitated whole-body protein deposition. In addition, dietary FO and PO increased the burden of the antioxidant system and the risk of lipid peroxidation in juvenile E. sinensis. Meanwhile, diets supplemented with PC effectively alleviated oxidative stress and lipid peroxidation caused by dietary FO and PO. The composition of fatty acids in muscle and hepatopancreas was positively associated with that in diets. Compared with SO and OO, FO and PO significantly reduced the lipid deposition in the hepatopancreas at 3% PC supplementation, possibly because FO and PO formed new physiological-active PC contained n-3 polyunsaturated fatty acids (PUFAs) with dietary PC through activating PC remodeling reaction, and promoting fatty acid utilization, and finally inhibiting the lipid accumulation in the hepatopancreas. This study indicates that FO and PO are better lipid sources (LSs) for E. sinensis, providing alternative oil sources in the crab diet in combination with PC supplementation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
期刊最新文献
Dietary Melatonin Boosts Reproduction and Growth Performance of Ornamental Fish Giant Danio (Devario aequipinnatus): A Transformative Approach for Scrapping Wild-Caught Fish Business Effects of Dietary Phosphatidylcholine Supplementation on Growth Performance, Antioxidant Capacity, Fatty Acid Composition, and Lipid Metabolism of Juvenile Eriocheir sinensis-Fed Different Oil Sources Crosstalk Between Protein Restriction and Fasting and Its Impacts on Growth, Digestive Enzymes, Immunity, Antioxidant Activity, and Relative Genes of Whiteleg Shrimp (Litopenaeus vannamei) Effects of Dietary Vitamin A on the Growth Performance, Nonspecific Immune Response, Shell Microbiota and Red Spotted Disease Resistance of Juvenile Sea Urchin (Strongylocentrotus intermedius) Effects of Dietary Supplement of Probiotic Enterococcus faecium on Intestinal Microbiota and Barrier Structure, Immune Function, and Antioxidant Capacity of Soft-Shelled Turtle Pelodiscus sinensis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1