{"title":"Virtual power line control for interlinking converters on AC, DC and hybrid grid links","authors":"Julen Paniagua, Eneko Unamuno, Jon Andoni Barrena","doi":"10.1049/gtd2.70021","DOIUrl":null,"url":null,"abstract":"<p>The increasing integration of renewable energy sources is making power systems evolve, driving the necessity to interconnect different power systems to improve the robustness and operation of grids. Here, the so-called virtual power line (VPL) control for interlinking converters (ICs) is presented, whose purpose is to couple different electric systems analogously to a classical transmission line. The VPL control employs local measurements, and it does not require any communication link to operate. Two VPL control variants are presented: the dual grid-supporting VPL control and the single grid-forming VPL (SGF-VPL) control. Both support the frequency and/or voltage of the interconnected grids, and the latter provides grid-forming capabilities for one of the interconnected systems. The performance of VPL controllers show how the frequency and voltage nadir values are improved by <span></span><math>\n <semantics>\n <mrow>\n <mn>36</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$36\\%$</annotation>\n </semantics></math> (when comparing low and strong coupling results), while the rate of change of frequency and voltage can be decreased by <span></span><math>\n <semantics>\n <mrow>\n <mn>49.6</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$49.6\\%$</annotation>\n </semantics></math>, with a <span></span><math>\n <semantics>\n <mrow>\n <mn>40</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$40\\%$</annotation>\n </semantics></math> faster settling time. Furthermore, it is demonstrated how the SGF-VPL is able to set the grid when other grid-forming units fail, and the flow of power happens naturally through ICs from generation to consumption areas as if all devices were part of the same electric system.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing integration of renewable energy sources is making power systems evolve, driving the necessity to interconnect different power systems to improve the robustness and operation of grids. Here, the so-called virtual power line (VPL) control for interlinking converters (ICs) is presented, whose purpose is to couple different electric systems analogously to a classical transmission line. The VPL control employs local measurements, and it does not require any communication link to operate. Two VPL control variants are presented: the dual grid-supporting VPL control and the single grid-forming VPL (SGF-VPL) control. Both support the frequency and/or voltage of the interconnected grids, and the latter provides grid-forming capabilities for one of the interconnected systems. The performance of VPL controllers show how the frequency and voltage nadir values are improved by (when comparing low and strong coupling results), while the rate of change of frequency and voltage can be decreased by , with a faster settling time. Furthermore, it is demonstrated how the SGF-VPL is able to set the grid when other grid-forming units fail, and the flow of power happens naturally through ICs from generation to consumption areas as if all devices were part of the same electric system.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf