{"title":"Semi-Quantum Signature Protocol Using EPR Steering and Single Photons","authors":"Chun-Wei Yang","doi":"10.1002/andp.202400260","DOIUrl":null,"url":null,"abstract":"<p>This study tackles critical issues in semi-quantum signature (SQS) protocols to enhance security and efficiency. It revisits Xia et al.’s SQS protocol, which uses EPR steering for security but introduces inconsistencies in a semi-quantum environment. Xia et al. assume that both the signatory and arbitrator have full quantum capabilities, while the verifier only has partial capabilities, making them a classical participant. However, their protocol requires the verifier to perform eavesdropping checks, necessitating quantum storage, which is not aligned with a semi-quantum environment. The study proposes a novel SQS protocol using EPR steering and single photons, with pre-shared keys to determine photon arrangements to address this. This ensures that only the communicating parties know the inspection and message transmission locations, solving the quantum storage issue and enabling efficient eavesdropper detection and identity authentication. This new protocol adheres to semi-quantum principles and sets a foundation for future advancements in quantum cryptography and secure communication.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400260","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study tackles critical issues in semi-quantum signature (SQS) protocols to enhance security and efficiency. It revisits Xia et al.’s SQS protocol, which uses EPR steering for security but introduces inconsistencies in a semi-quantum environment. Xia et al. assume that both the signatory and arbitrator have full quantum capabilities, while the verifier only has partial capabilities, making them a classical participant. However, their protocol requires the verifier to perform eavesdropping checks, necessitating quantum storage, which is not aligned with a semi-quantum environment. The study proposes a novel SQS protocol using EPR steering and single photons, with pre-shared keys to determine photon arrangements to address this. This ensures that only the communicating parties know the inspection and message transmission locations, solving the quantum storage issue and enabling efficient eavesdropper detection and identity authentication. This new protocol adheres to semi-quantum principles and sets a foundation for future advancements in quantum cryptography and secure communication.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.