Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-02-11 DOI:10.1039/d4fo04534c
Jing Zhang, Mengzhu Shen, Yue Yin, Yuru Chen, Xianying Deng, Jingyun Mo, Xiaoling Zhou, Juanying Lin, Xinxin Chen, Xinwei Xie, Xian Wu, Xuexiang Chen
{"title":"Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice.","authors":"Jing Zhang, Mengzhu Shen, Yue Yin, Yuru Chen, Xianying Deng, Jingyun Mo, Xiaoling Zhou, Juanying Lin, Xinxin Chen, Xinwei Xie, Xian Wu, Xuexiang Chen","doi":"10.1039/d4fo04534c","DOIUrl":null,"url":null,"abstract":"<p><p>Carnosic acid (CA) is a bioactive phenolic diterperne compound found in sage and rosemary. The present study investigated the beneficial effects of CA (50 and 100 mg per kg bw) in diet-induced obese mice and the underlying mechanisms of action. After the intervention, the physiology, lipid metabolism, and tissue morphology, as well as the inflammation, gut microbiota, and metabolomics in the colon were measured. We found that CA improved the composition and metabolism of the gut microbiota in obese mice, with <i>Akkermansia</i> being the dominant bacterium negatively correlated with obesity and various fecal metabolites. Regarding the intestinal barrier function, CA promoted the expression of tight junction proteins and inhibited the TLR4/MyD88/NF-κB signaling pathway in obese mice to alleviate colonic inflammation. These results suggest that CA improved multiple aspects of gut health in diet-induced obesity in mice, providing a scientific basis for future clinical studies in humans.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04534c","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carnosic acid (CA) is a bioactive phenolic diterperne compound found in sage and rosemary. The present study investigated the beneficial effects of CA (50 and 100 mg per kg bw) in diet-induced obese mice and the underlying mechanisms of action. After the intervention, the physiology, lipid metabolism, and tissue morphology, as well as the inflammation, gut microbiota, and metabolomics in the colon were measured. We found that CA improved the composition and metabolism of the gut microbiota in obese mice, with Akkermansia being the dominant bacterium negatively correlated with obesity and various fecal metabolites. Regarding the intestinal barrier function, CA promoted the expression of tight junction proteins and inhibited the TLR4/MyD88/NF-κB signaling pathway in obese mice to alleviate colonic inflammation. These results suggest that CA improved multiple aspects of gut health in diet-induced obesity in mice, providing a scientific basis for future clinical studies in humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Amelioration of metabolic syndrome in high-fat diet-fed mice by total sesquiterpene lactones of chicory via modulation of intestinal flora and bile acid excretion. Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice. Effects of tocotrienol-enriched oat supplementation on metabolic profile, nutritional status and health-related quality of life among patients with metabolic syndrome. Red wine consumption activates the erythropoietin-erythroferrone-hepcidin erythropoietic pathway in both apparently healthy individuals and patients with type 2 diabetes. The microbiome- and metabolome-modulating activity of dietary cholesterol: insights from the small and large intestines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1