Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-10 DOI:10.1186/s12870-025-06155-z
Rosy Raman, Yu Qiu, N Coombes, Harsh Raman
{"title":"Identification and validation of genomic regions for pod shatter resistance in Brassica rapa using QTL-seq and traditional QTL mapping.","authors":"Rosy Raman, Yu Qiu, N Coombes, Harsh Raman","doi":"10.1186/s12870-025-06155-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pod shatter resistance is an important trait in Brassica species, significantly impacting the yield and profitability of growers. Identifying genomic regions and understanding genes underlying shatter resistance is a major objective of breeding programs. Brassica rapa, commonly known as rape or field mustard, is an ancestral species of Brassica napus and Brassica juncea - the most widely oilseed crops grown worldwide. In this study, we performed diversity analysis of B. rapa accessions, bulked segregant analysis based quantitative trait locus-sequencing (QTL-seq), and traditional quantitative trait locus (QTL) mapping in an F<sub>2</sub> population to identify genomic regions associated with pod shatter resistance in B. rapa.</p><p><strong>Results: </strong>A considerable genetic variation for pod shatter resistance, measured as rupture energy (RE), varied from 0.63 to 3.49 mJ<sup>(½)</sup> was revealed among 90 accessions of B. rapa. Cluster analysis based on 10,324 DArTseq markers showed that pod shatter-resistant accessions originated from diverse sources. We further investigated the genetic and anatomical bases of variation in pod shatter resistance from two contrasting parental lines, ATC90153 (maternal parent with high RE) and ATC91215 (paternal parent with low RE). Bulked segregant resequencing analysis of parental lines and two pooled samples, prepared from 10 resistant and 10 sensitive lines to pod shatter, identified three genomic regions for shatter resistance on chromosomes A06 and A09. Traditional QTL analysis validated marker-pod shatter resistance associations on chromosomes A06 and A09 in the same F<sub>2</sub> population using a linkage map based on 23,274 DArTseq markers. Physical positions of significantly associated markers and the priori pod dehiscence genes on the B. rapa reference genome sequence suggested BEE1/PEROXIDASE/TCP8 on A06 and ADPG1/SHP1/MYB116 genes on A09 as potential candidates for pod shatter resistance. Sequence comparison of parental lines identified sequence variants (194 SNPs and 74 InDELs on A06, and two SNPs and two InDELs on A09) in the promoter and downstream regions of B. rapa genes within the QTL.</p><p><strong>Conclusions: </strong>We identified QTLs and priori candidate genes associated with variation in pod shatter resistance on chromosomes A06 and A09 in B. rapa. This study provides potential gene targets to understand molecular mechanisms and improve pod shatter resistance in Brassica crops.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"175"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06155-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pod shatter resistance is an important trait in Brassica species, significantly impacting the yield and profitability of growers. Identifying genomic regions and understanding genes underlying shatter resistance is a major objective of breeding programs. Brassica rapa, commonly known as rape or field mustard, is an ancestral species of Brassica napus and Brassica juncea - the most widely oilseed crops grown worldwide. In this study, we performed diversity analysis of B. rapa accessions, bulked segregant analysis based quantitative trait locus-sequencing (QTL-seq), and traditional quantitative trait locus (QTL) mapping in an F2 population to identify genomic regions associated with pod shatter resistance in B. rapa.

Results: A considerable genetic variation for pod shatter resistance, measured as rupture energy (RE), varied from 0.63 to 3.49 mJ(½) was revealed among 90 accessions of B. rapa. Cluster analysis based on 10,324 DArTseq markers showed that pod shatter-resistant accessions originated from diverse sources. We further investigated the genetic and anatomical bases of variation in pod shatter resistance from two contrasting parental lines, ATC90153 (maternal parent with high RE) and ATC91215 (paternal parent with low RE). Bulked segregant resequencing analysis of parental lines and two pooled samples, prepared from 10 resistant and 10 sensitive lines to pod shatter, identified three genomic regions for shatter resistance on chromosomes A06 and A09. Traditional QTL analysis validated marker-pod shatter resistance associations on chromosomes A06 and A09 in the same F2 population using a linkage map based on 23,274 DArTseq markers. Physical positions of significantly associated markers and the priori pod dehiscence genes on the B. rapa reference genome sequence suggested BEE1/PEROXIDASE/TCP8 on A06 and ADPG1/SHP1/MYB116 genes on A09 as potential candidates for pod shatter resistance. Sequence comparison of parental lines identified sequence variants (194 SNPs and 74 InDELs on A06, and two SNPs and two InDELs on A09) in the promoter and downstream regions of B. rapa genes within the QTL.

Conclusions: We identified QTLs and priori candidate genes associated with variation in pod shatter resistance on chromosomes A06 and A09 in B. rapa. This study provides potential gene targets to understand molecular mechanisms and improve pod shatter resistance in Brassica crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. How to utilize far-red photons effectively: substitution or supplementation with photosynthetically active radiation? A case study of greenhouse lettuce. Proteomics analysis revealed the activation and suppression of different host defense components challenged with mango leaf spot pathogen Alternaria alternata. Salinity tolerance in Cucumis sativus seedlings: the role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1