Coordinated gene expression and hormonal fluxes dictating ginsenoside Rb3 biosynthesis in floral development of Panax notoginseng.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-10 DOI:10.1186/s12870-025-06149-x
Can Wang, Hongwei Sun, Yuling Yang, Cuixian Peng, Yuan Liu, Yonghong Tao
{"title":"Coordinated gene expression and hormonal fluxes dictating ginsenoside Rb3 biosynthesis in floral development of Panax notoginseng.","authors":"Can Wang, Hongwei Sun, Yuling Yang, Cuixian Peng, Yuan Liu, Yonghong Tao","doi":"10.1186/s12870-025-06149-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Panax notoginseng (PN) is a medicinal plant containing essential ginsenosides. Given the therapeutic significance of ginsenosides, we delved into the mechanisms of ginsenoside Rb3 biosynthesis in PN flowers. We examined this process from the pre-differentiation stage to the end of flowering, aiming to uncover the biochemical pathways underlying ginsenoside production in PN.</p><p><strong>Results: </strong>Budding stage (T2) was found critical for enhanced Rb3 production. Transcriptomic analysis revealed a marked shift in gene expression beginning at T2, with upregulation in pathways associated with secondary metabolite production. Gene set enrichment analysis (GSEA) illuminated the upregulation of genes involved in terpenoid backbone biosynthesis, amino acid degradation, and terpenoid modifications, specifically at T2. We correlated the fluctuating hormone levels with the activity of the transcription factor MYC2 to underscore hormonal influence on ginsenoside biosynthesis. Biosynthesis pathway reconstruction revealed the dominance of the mevalonate pathway. Critical enzymes such as ACAT, PPDS, DDS, and LUP4 were vital in precursor biosynthesis and modification. Notably, key genes such as HMGCS, FDPS, and DDS, as well as transcription factors MYC2, MYB124, and MYB61.1, showed a concerted surge in activity at T2.</p><p><strong>Conclusions: </strong>These findings provide insights into the complex gene networks and molecular pathways that regulate ginsenoside biosynthesis, thereby promoting the medicinal properties of PN.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"177"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06149-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Panax notoginseng (PN) is a medicinal plant containing essential ginsenosides. Given the therapeutic significance of ginsenosides, we delved into the mechanisms of ginsenoside Rb3 biosynthesis in PN flowers. We examined this process from the pre-differentiation stage to the end of flowering, aiming to uncover the biochemical pathways underlying ginsenoside production in PN.

Results: Budding stage (T2) was found critical for enhanced Rb3 production. Transcriptomic analysis revealed a marked shift in gene expression beginning at T2, with upregulation in pathways associated with secondary metabolite production. Gene set enrichment analysis (GSEA) illuminated the upregulation of genes involved in terpenoid backbone biosynthesis, amino acid degradation, and terpenoid modifications, specifically at T2. We correlated the fluctuating hormone levels with the activity of the transcription factor MYC2 to underscore hormonal influence on ginsenoside biosynthesis. Biosynthesis pathway reconstruction revealed the dominance of the mevalonate pathway. Critical enzymes such as ACAT, PPDS, DDS, and LUP4 were vital in precursor biosynthesis and modification. Notably, key genes such as HMGCS, FDPS, and DDS, as well as transcription factors MYC2, MYB124, and MYB61.1, showed a concerted surge in activity at T2.

Conclusions: These findings provide insights into the complex gene networks and molecular pathways that regulate ginsenoside biosynthesis, thereby promoting the medicinal properties of PN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. How to utilize far-red photons effectively: substitution or supplementation with photosynthetically active radiation? A case study of greenhouse lettuce. Proteomics analysis revealed the activation and suppression of different host defense components challenged with mango leaf spot pathogen Alternaria alternata. Salinity tolerance in Cucumis sativus seedlings: the role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1