Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su
{"title":"FOXO3a/miR-4259-driven LDHA expression as a key mechanism of gemcitabine sensitivity in pancreatic ductal adenocarcinoma.","authors":"Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su","doi":"10.1186/s40170-025-00377-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.</p><p><strong>Methods: </strong>We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.</p><p><strong>Results: </strong>We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.</p><p><strong>Conclusion: </strong>Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"7"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00377-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.
Methods: We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.
Results: We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.
Conclusion: Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.
期刊介绍:
Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.