A Novel TLR4 Accessory Molecule Drives Hepatic Oncogenesis through Tumor-Associated Macrophages.

IF 9.1 1区 医学 Q1 ONCOLOGY Cancer letters Pub Date : 2025-02-08 DOI:10.1016/j.canlet.2025.217543
Doyeon Kim, Carter A Allen, Dongjun Chung, Lingbin Meng, Xiaoli Zhang, Wenqing Zhang, Yuli Ouyang, Zihai Li, Feng Hong
{"title":"A Novel TLR4 Accessory Molecule Drives Hepatic Oncogenesis through Tumor-Associated Macrophages.","authors":"Doyeon Kim, Carter A Allen, Dongjun Chung, Lingbin Meng, Xiaoli Zhang, Wenqing Zhang, Yuli Ouyang, Zihai Li, Feng Hong","doi":"10.1016/j.canlet.2025.217543","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment, yet the roles and mechanisms of TAMs in inflammation-associated oncogenesis remain enigmatic. We report that protein canopy homolog 2 (CNPY2) functions as a novel TLR4 regulator, promoting cytokine production in macrophages. CNPY2 binds directly to TLR4. Cnpy2 deficiency reduces cell surface expression of TLR4, nuclear translocation of NFκB and cytokine production in macrophages. Macrophage-specific CNPY2 deficiency significantly decreases cytokine production in macrophages and reduces hepatocarcinogenesis in a diethylnitrosamine (DEN)-induced liver cancer model. RNA-sequencing analysis revealed Cnpy2 knockout decreased the mRNA level and cell surface expression of two VEGF receptors, Flt1 and Kdr, compared to those in WT counterparts, resulting in inhibition of macrophage tumor infiltration. Cnpy2 knockout inhibits NFκB2/p52-mediated transcription of Flt1 and Kdr in macrophages. These findings demonstrate that CNPY2 regulates macrophages in both inflammation and hepatocarcinogenesis and may serve as a therapeutic target for cancer.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217543"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2025.217543","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment, yet the roles and mechanisms of TAMs in inflammation-associated oncogenesis remain enigmatic. We report that protein canopy homolog 2 (CNPY2) functions as a novel TLR4 regulator, promoting cytokine production in macrophages. CNPY2 binds directly to TLR4. Cnpy2 deficiency reduces cell surface expression of TLR4, nuclear translocation of NFκB and cytokine production in macrophages. Macrophage-specific CNPY2 deficiency significantly decreases cytokine production in macrophages and reduces hepatocarcinogenesis in a diethylnitrosamine (DEN)-induced liver cancer model. RNA-sequencing analysis revealed Cnpy2 knockout decreased the mRNA level and cell surface expression of two VEGF receptors, Flt1 and Kdr, compared to those in WT counterparts, resulting in inhibition of macrophage tumor infiltration. Cnpy2 knockout inhibits NFκB2/p52-mediated transcription of Flt1 and Kdr in macrophages. These findings demonstrate that CNPY2 regulates macrophages in both inflammation and hepatocarcinogenesis and may serve as a therapeutic target for cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
期刊最新文献
Corrigendum to "Lycorine promotes IDH1 acetylation to induce mitochondrial dynamics imbalance in colorectal cancer cells" [Canc. Lett. 573 (2023) 216364]. CircMFN2/miR-361-3p/ELK1 feedback loop promotes glutaminolysis and the progression of hepatocellular carcinoma. A Novel TLR4 Accessory Molecule Drives Hepatic Oncogenesis through Tumor-Associated Macrophages. Traditional medicine Bazi Bushen potentiates immunosurveillance of senescent liver cancer cells via cGAS-STING signaling activation in macrophages. Current status and prospects of targeted therapy for cholangiocarcinoma based on molecular characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1