Computational Phenotyping of Obstructive Airway Diseases: A Systematic Review.

IF 3.7 3区 医学 Q2 ALLERGY Journal of Asthma and Allergy Pub Date : 2025-02-06 eCollection Date: 2025-01-01 DOI:10.2147/JAA.S463572
Muwada Bashir Awad Bashir, Gregorio Paolo Milani, Valentina De Cosmi, Alessandra Mazzocchi, Guoqiang Zhang, Rani Basna, Linnea Hedman, Anne Lindberg, Linda Ekerljung, Malin Axelsson, Lowie E G W Vanfleteren, Eva Rönmark, Helena Backman, Hannu Kankaanranta, Bright I Nwaru
{"title":"Computational Phenotyping of Obstructive Airway Diseases: A Systematic Review.","authors":"Muwada Bashir Awad Bashir, Gregorio Paolo Milani, Valentina De Cosmi, Alessandra Mazzocchi, Guoqiang Zhang, Rani Basna, Linnea Hedman, Anne Lindberg, Linda Ekerljung, Malin Axelsson, Lowie E G W Vanfleteren, Eva Rönmark, Helena Backman, Hannu Kankaanranta, Bright I Nwaru","doi":"10.2147/JAA.S463572","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Computational sciences have significantly contributed to characterizing airway disease phenotypes, complementing medical expertise. However, comparing studies that derive phenotypes is challenging due to varying decisions made during phenotyping. We conducted a systematic review to describe studies that utilized unsupervised computational approaches for phenotyping obstructive airway diseases in children and adults.</p><p><strong>Methods: </strong>We searched for relevant papers published between 2010 and 2020 in PubMed, EMBASE, Scopus, Web of Science, and Google Scholar. Additional sources included conference proceedings, reference lists, and expert recommendations. Two reviewers independently screened studies for eligibility, extracted data, and assessed study quality. Disagreements were resolved by a third reviewer. An in-house quality appraisal tool was used. Evidence was synthesized, focusing on populations, variables, and computational approaches used for deriving phenotypes.</p><p><strong>Results: </strong>Of 120 studies included in the review, 60 focused on asthma, 19 on severe asthma, 28 on COPD, 4 on asthma-COPD overlap (ACO), and 9 on rhinitis. Among asthma studies, 31 focused on adults and 9 on children, with phenotypes related to atopy, age at onset, and disease severity. Severe asthma phenotypes were characterized by symptomatology, atopy, and age at onset. COPD phenotypes involved lung function, emphysematous changes, smoking, comorbidities, and daily life impairment. ACO and rhinitis phenotypes were mostly defined by symptoms, lung function, and sensitization, respectively. Most studies used hierarchical clustering, with some employing latent class modeling, mixture models, and factor analysis. The comprehensiveness of variable reporting was the best quality indicator, while reproducibility measures were often lacking.</p><p><strong>Conclusion: </strong>Variations in phenotyping methods, study settings, participant profiles, and variables contribute to significant differences in characterizing asthma, severe asthma, COPD, ACO, and rhinitis phenotypes across studies. Lack of reproducibility measures limits the evaluation of computational phenotyping in airway diseases, underscoring the need for consistent approaches to defining outcomes and selecting variables to ensure reliable phenotyping.</p>","PeriodicalId":15079,"journal":{"name":"Journal of Asthma and Allergy","volume":"18 ","pages":"113-160"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asthma and Allergy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JAA.S463572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Computational sciences have significantly contributed to characterizing airway disease phenotypes, complementing medical expertise. However, comparing studies that derive phenotypes is challenging due to varying decisions made during phenotyping. We conducted a systematic review to describe studies that utilized unsupervised computational approaches for phenotyping obstructive airway diseases in children and adults.

Methods: We searched for relevant papers published between 2010 and 2020 in PubMed, EMBASE, Scopus, Web of Science, and Google Scholar. Additional sources included conference proceedings, reference lists, and expert recommendations. Two reviewers independently screened studies for eligibility, extracted data, and assessed study quality. Disagreements were resolved by a third reviewer. An in-house quality appraisal tool was used. Evidence was synthesized, focusing on populations, variables, and computational approaches used for deriving phenotypes.

Results: Of 120 studies included in the review, 60 focused on asthma, 19 on severe asthma, 28 on COPD, 4 on asthma-COPD overlap (ACO), and 9 on rhinitis. Among asthma studies, 31 focused on adults and 9 on children, with phenotypes related to atopy, age at onset, and disease severity. Severe asthma phenotypes were characterized by symptomatology, atopy, and age at onset. COPD phenotypes involved lung function, emphysematous changes, smoking, comorbidities, and daily life impairment. ACO and rhinitis phenotypes were mostly defined by symptoms, lung function, and sensitization, respectively. Most studies used hierarchical clustering, with some employing latent class modeling, mixture models, and factor analysis. The comprehensiveness of variable reporting was the best quality indicator, while reproducibility measures were often lacking.

Conclusion: Variations in phenotyping methods, study settings, participant profiles, and variables contribute to significant differences in characterizing asthma, severe asthma, COPD, ACO, and rhinitis phenotypes across studies. Lack of reproducibility measures limits the evaluation of computational phenotyping in airway diseases, underscoring the need for consistent approaches to defining outcomes and selecting variables to ensure reliable phenotyping.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Asthma and Allergy
Journal of Asthma and Allergy Medicine-Immunology and Allergy
CiteScore
5.30
自引率
6.20%
发文量
185
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed journal publishing original research, reports, editorials and commentaries on the following topics: Asthma; Pulmonary physiology; Asthma related clinical health; Clinical immunology and the immunological basis of disease; Pharmacological interventions and new therapies. Although the main focus of the journal will be to publish research and clinical results in humans, preclinical, animal and in vitro studies will be published where they shed light on disease processes and potential new therapies.
期刊最新文献
Clinical Burden and Healthcare Resource Use of Asthma in Children in the UK. Computational Phenotyping of Obstructive Airway Diseases: A Systematic Review. The Joint Association of Sleep Quality and Outdoor Activity with Asthma and Allergic Rhinitis in Children: A Cross-Sectional Study in Shanghai. Bibliometric Analysis of Global Pediatric Research on Cow's Milk Protein Allergy. Changes in and Potential Mechanisms of Circulating IgA+CD27-Class-Switched Memory B Cells in Patients With Allergic Rhinitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1