Exploring the interplay of glucose metabolism, insulin resistance, and neurodegenerative pathologies: insights from streptozotocin and hypoglycaemic in vitro models.

IF 3.2 4区 医学 Q2 CLINICAL NEUROLOGY Journal of Neural Transmission Pub Date : 2025-02-11 DOI:10.1007/s00702-025-02891-6
Edna Grünblatt, Cristine Marie Yde Ohki, G Angelika Schmitt-Böhrer, Peter Riederer, Susanne Walitza
{"title":"Exploring the interplay of glucose metabolism, insulin resistance, and neurodegenerative pathologies: insights from streptozotocin and hypoglycaemic in vitro models.","authors":"Edna Grünblatt, Cristine Marie Yde Ohki, G Angelika Schmitt-Böhrer, Peter Riederer, Susanne Walitza","doi":"10.1007/s00702-025-02891-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases raise public health concerns. Recent evidence indicates that Alzheimer's disease (AD) sufferers will triple by 2050. The rising incidence of dementia diagnoses raises concerns about the socio-economical and emotional impact of this uncurable illness, which reduces quality of life through cognitive decline. Although genetic and environmental factors may contribute to its aetiology, neuropathological mechanisms underlying these disorders are still under investigation. One is brain insulin resistance (BIR), which has been associated with clinical cognitive dysfunction and linked to mitochondrial dysfunction, neurogenesis deficits, and cell death. Not limited to neurodegeneration, these phenotypes have been associated with other neuropsychiatric disorders. Streptozotocin (STZ), a diabetes-causing drug that targets pancreatic β-cells, may imitate BIR in suitable models. From patients' neuroimaging to in vitro approaches, scientists have been striving to understand the pathophysiology of such disorders at the behavioural, molecular, and cellular levels. Although animal models are useful for studying insulin resistance's systemic effects, in vitro phenotypic research represents an alternative to study molecular and cellular aspects. STZ and hypoglycaemia-like scenarios have been successful for studying neurodegenerative disorders in primary cell culture (e.g., neuroblastoma cells) and patient-specific neural cell lines derived from pluripotent stem cells (iPSCs). Intriguingly, STZ treatment or hypoglycaemia-like conditions in a dish were able to induce AD pathological characteristics such Aβ plaque deposition and Tau protein hyperphosphorylation. Such approaches have shown potential in understanding molecular and cellular implications of metabolic changes in neuropsychiatric disorders, according to this review. Furthermore, these models may help identify novel treatment targets.</p>","PeriodicalId":16579,"journal":{"name":"Journal of Neural Transmission","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00702-025-02891-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases raise public health concerns. Recent evidence indicates that Alzheimer's disease (AD) sufferers will triple by 2050. The rising incidence of dementia diagnoses raises concerns about the socio-economical and emotional impact of this uncurable illness, which reduces quality of life through cognitive decline. Although genetic and environmental factors may contribute to its aetiology, neuropathological mechanisms underlying these disorders are still under investigation. One is brain insulin resistance (BIR), which has been associated with clinical cognitive dysfunction and linked to mitochondrial dysfunction, neurogenesis deficits, and cell death. Not limited to neurodegeneration, these phenotypes have been associated with other neuropsychiatric disorders. Streptozotocin (STZ), a diabetes-causing drug that targets pancreatic β-cells, may imitate BIR in suitable models. From patients' neuroimaging to in vitro approaches, scientists have been striving to understand the pathophysiology of such disorders at the behavioural, molecular, and cellular levels. Although animal models are useful for studying insulin resistance's systemic effects, in vitro phenotypic research represents an alternative to study molecular and cellular aspects. STZ and hypoglycaemia-like scenarios have been successful for studying neurodegenerative disorders in primary cell culture (e.g., neuroblastoma cells) and patient-specific neural cell lines derived from pluripotent stem cells (iPSCs). Intriguingly, STZ treatment or hypoglycaemia-like conditions in a dish were able to induce AD pathological characteristics such Aβ plaque deposition and Tau protein hyperphosphorylation. Such approaches have shown potential in understanding molecular and cellular implications of metabolic changes in neuropsychiatric disorders, according to this review. Furthermore, these models may help identify novel treatment targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neural Transmission
Journal of Neural Transmission 医学-临床神经学
CiteScore
7.20
自引率
3.00%
发文量
112
审稿时长
2 months
期刊介绍: The investigation of basic mechanisms involved in the pathogenesis of neurological and psychiatric disorders has undoubtedly deepened our knowledge of these types of disorders. The impact of basic neurosciences on the understanding of the pathophysiology of the brain will further increase due to important developments such as the emergence of more specific psychoactive compounds and new technologies. The Journal of Neural Transmission aims to establish an interface between basic sciences and clinical neurology and psychiatry. It intends to put a special emphasis on translational publications of the newest developments in the field from all disciplines of the neural sciences that relate to a better understanding and treatment of neurological and psychiatric disorders.
期刊最新文献
Enigmatic intractable Epilepsy patients have antibodies that bind glutamate receptor peptides, kill neurons, damage the brain, and cause Generalized Tonic Clonic Seizures. Exploring the interplay of glucose metabolism, insulin resistance, and neurodegenerative pathologies: insights from streptozotocin and hypoglycaemic in vitro models. Protein misfolding: understanding biology to classify and treat synucleinopathies. TMEM119-positive microglial cells in cerebrospinal fluid, a potential new marker for neuroinflammatory response after aneurysmal subarachnoid hemorrhage. Behavioral disorders in dementia with Lewy bodies: old and new knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1