ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance.

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2025-02-08 DOI:10.1016/j.molmet.2025.102111
Philipp Stüve, Gloria J Godoy, Fernando N Ferreyra, Florencia Hellriegel, Fatima Boukhallouk, Yu-San Kao, Tushar H More, Anne-Marie Matthies, Tatiana Akimova, Wolf-Rainer Abraham, Volkhard Kaever, Ingo Schmitz, Karsten Hiller, Matthias Lochner, Benoît L Salomon, Ulf H Beier, Michael Rehli, Tim Sparwasser, Luciana Berod
{"title":"ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance.","authors":"Philipp Stüve, Gloria J Godoy, Fernando N Ferreyra, Florencia Hellriegel, Fatima Boukhallouk, Yu-San Kao, Tushar H More, Anne-Marie Matthies, Tatiana Akimova, Wolf-Rainer Abraham, Volkhard Kaever, Ingo Schmitz, Karsten Hiller, Matthias Lochner, Benoît L Salomon, Ulf H Beier, Michael Rehli, Tim Sparwasser, Luciana Berod","doi":"10.1016/j.molmet.2025.102111","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs).</p><p><strong>Methods: </strong>We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases.</p><p><strong>Results: </strong>Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acety lation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt<sup>+</sup>FoxP3<sup>+</sup> cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models.</p><p><strong>Conclusions: </strong>We identified acetyl-CoA carboxylase 1 (ACC1) as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102111"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs).

Methods: We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases.

Results: Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acety lation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models.

Conclusions: We identified acetyl-CoA carboxylase 1 (ACC1) as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
BIX01294 suppresses PDAC growth through inhibition of glutaminase-mediated glutathione dynamics. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: disease pathogenesis and treatment. Corrigendum to “Timing of exercise differentially impacts adipose tissue gain in male adolescent rats” [Mol Metabol 93 (2025) 102100, 1–14] ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance. Impact of sleep deprivation on colon cancer: Unraveling the KynA-P4HA2-HIF-1α axis in tumor lipid metabolism and metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1