Takashi Baba, Ryo Hagiuda, Hiromi Matsumae, Dai Hirose
{"title":"Does the genome of <i>Sarcoleotia globosa</i> encode a rich carbohydrate-active enzyme gene repertoire?","authors":"Takashi Baba, Ryo Hagiuda, Hiromi Matsumae, Dai Hirose","doi":"10.1080/00275514.2025.2452305","DOIUrl":null,"url":null,"abstract":"<p><p>The lifestyles of the order Geoglossales (Geoglossomycetes, Ascomycota) remain largely unknown. Recent observations support ericoid mycorrhizal lifestyles, especially in cultured <i>Sarcoleotia</i>-related species. However, the currently known genomes of geoglossoid fungi encode fewer carbohydrate-active enzymes (CAZymes) in Pezizomycotina, in contrast to the abundant CAZyme repertoires found in well-known ericoid mycorrhizal fungi. The absence of assembled genomes for cultured geoglossoid fungi hinders our understanding of the genomic features related to their lifestyles. We hypothesize that the genome of <i>Sarcoleotia globosa</i>, a putative ericoid mycorrhizal fungus, encodes abundant CAZymes, consistent with its culturability. General features, such as smaller genome size and smaller number of genes, are shared between the genome of <i>S. globosa</i> strain NBRC 116039 and other geoglossalean genomes. However, the former had the most extensive CAZyme repertoire, with several enzyme families involved in plant cell wall degradation. Some of these CAZymes are not found in Geoglossales and closely related lineages. Nonetheless, the number of CAZymes from <i>S. globosa</i> was notably smaller than that previously reported in ericoid mycorrhizal fungi. This inconsistency may highlight not only ecophysiological variation among ericoid root mycobionts but also the specific evolution of lifestyles in Geoglossales.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":" ","pages":"1-6"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2025.2452305","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lifestyles of the order Geoglossales (Geoglossomycetes, Ascomycota) remain largely unknown. Recent observations support ericoid mycorrhizal lifestyles, especially in cultured Sarcoleotia-related species. However, the currently known genomes of geoglossoid fungi encode fewer carbohydrate-active enzymes (CAZymes) in Pezizomycotina, in contrast to the abundant CAZyme repertoires found in well-known ericoid mycorrhizal fungi. The absence of assembled genomes for cultured geoglossoid fungi hinders our understanding of the genomic features related to their lifestyles. We hypothesize that the genome of Sarcoleotia globosa, a putative ericoid mycorrhizal fungus, encodes abundant CAZymes, consistent with its culturability. General features, such as smaller genome size and smaller number of genes, are shared between the genome of S. globosa strain NBRC 116039 and other geoglossalean genomes. However, the former had the most extensive CAZyme repertoire, with several enzyme families involved in plant cell wall degradation. Some of these CAZymes are not found in Geoglossales and closely related lineages. Nonetheless, the number of CAZymes from S. globosa was notably smaller than that previously reported in ericoid mycorrhizal fungi. This inconsistency may highlight not only ecophysiological variation among ericoid root mycobionts but also the specific evolution of lifestyles in Geoglossales.
期刊介绍:
International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.