Predicting imitative performance through cortico-cerebellar circuits: A multivariate and effective connectivity study

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-08 DOI:10.1016/j.neuroimage.2025.121081
Antonino Errante , Giuseppe Ciullo , Settimio Ziccarelli , Alessandro Piras , Cristina Russo , Leonardo Fogassi
{"title":"Predicting imitative performance through cortico-cerebellar circuits: A multivariate and effective connectivity study","authors":"Antonino Errante ,&nbsp;Giuseppe Ciullo ,&nbsp;Settimio Ziccarelli ,&nbsp;Alessandro Piras ,&nbsp;Cristina Russo ,&nbsp;Leonardo Fogassi","doi":"10.1016/j.neuroimage.2025.121081","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to accurately imitate actions requires the contribution of the Mirror Neuron System (MNS) and of prefrontal and cerebellar regions. The present study aimed at investigating whether functional interaction between cortical areas and the cerebellum during the observation of complex bimanual actions can predict individual ability to imitate the same actions. Nineteen healthy participants underwent an fMRI task in which they observed complex bimanual action sequences (paper folding) and subsequently imitated the same sequences. Control conditions included passive observation of bimanual actions, observation of reaching movements, observation of actions without intent to imitate, and observation of natural landscapes. Participants’ imitation performance was video-recorded and scored for accuracy. Univariate whole-brain regression, multivariate pattern recognition, and generalized psychophysiological interaction analyses were used to assess whether activation patterns during the observation phase could predict subsequent imitation performance. The results showed that: (i) observing actions during the imitation condition activated parietal, premotor, prefrontal cortex, and lateral cerebellum; (ii) activation levels in the left anterior intraparietal sulcus (aIPS), ventral premotor cortex (PMv), dorsolateral prefrontal cortex (DLPFC), and right lateral cerebellum (CB VI) predicted imitation accuracy; (iii) a bilateral distribution pattern involving aIPS, PMv, DLPFC, and CB VI better predicted imitation performance than a whole-brain approach; (iv) increased effective connectivity between the right CB VI, left aIPS, and left DLPFC during observation-to-imitate condition correlated with higher imitation accuracy. These findings underscore the role of the cerebellum within the MNS in simulating observed actions and enabling their accurate reproduction.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121081"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000837","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to accurately imitate actions requires the contribution of the Mirror Neuron System (MNS) and of prefrontal and cerebellar regions. The present study aimed at investigating whether functional interaction between cortical areas and the cerebellum during the observation of complex bimanual actions can predict individual ability to imitate the same actions. Nineteen healthy participants underwent an fMRI task in which they observed complex bimanual action sequences (paper folding) and subsequently imitated the same sequences. Control conditions included passive observation of bimanual actions, observation of reaching movements, observation of actions without intent to imitate, and observation of natural landscapes. Participants’ imitation performance was video-recorded and scored for accuracy. Univariate whole-brain regression, multivariate pattern recognition, and generalized psychophysiological interaction analyses were used to assess whether activation patterns during the observation phase could predict subsequent imitation performance. The results showed that: (i) observing actions during the imitation condition activated parietal, premotor, prefrontal cortex, and lateral cerebellum; (ii) activation levels in the left anterior intraparietal sulcus (aIPS), ventral premotor cortex (PMv), dorsolateral prefrontal cortex (DLPFC), and right lateral cerebellum (CB VI) predicted imitation accuracy; (iii) a bilateral distribution pattern involving aIPS, PMv, DLPFC, and CB VI better predicted imitation performance than a whole-brain approach; (iv) increased effective connectivity between the right CB VI, left aIPS, and left DLPFC during observation-to-imitate condition correlated with higher imitation accuracy. These findings underscore the role of the cerebellum within the MNS in simulating observed actions and enabling their accurate reproduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Video communication mitigate feelings of friendliness: A functional near-infrared spectroscopy study Corrigendum to "Specialization for different memory dimensions in brain activity evoked by cued recollection" [NeuroImage 308 (2025) 121068]. EEG Microstate Syntax Analysis: A Review of Methodological Challenges and Advances. A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals. Neural Mechanisms of Intersensory Switching: Evidence for Delayed Sensory Processing and Increased Cognitive Demands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1