Borrelial phosphomannose isomerase as a cell surface localized protein that retains enzymatic activity and promotes host-pathogen interaction.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-02-11 DOI:10.1128/mbio.03609-24
Shraboni Dutta, Vipin S Rana, Brian T Backstedt, Anil K Shakya, Chrysoula Kitsou, Ozlem B Yas, Alexis A Smith, Michael H Ronzetti, Rachel M Lipman, Sarai Araujo-Aris, Xiuli Yang, Ganesha Rai, Yi-Pin Lin, Osnat Herzberg, Utpal Pal
{"title":"Borrelial phosphomannose isomerase as a cell surface localized protein that retains enzymatic activity and promotes host-pathogen interaction.","authors":"Shraboni Dutta, Vipin S Rana, Brian T Backstedt, Anil K Shakya, Chrysoula Kitsou, Ozlem B Yas, Alexis A Smith, Michael H Ronzetti, Rachel M Lipman, Sarai Araujo-Aris, Xiuli Yang, Ganesha Rai, Yi-Pin Lin, Osnat Herzberg, Utpal Pal","doi":"10.1128/mbio.03609-24","DOIUrl":null,"url":null,"abstract":"<p><p>All organisms produce an intracellular Zn<sup>2+</sup>-dependent enzyme, phosphomannose isomerase (PMI) or mannose-6 phosphate isomerase, that catalyzes the reversible conversion of mannose-6-phosphate and fructose-6-phosphate during sugar metabolism and polysaccharide biosynthesis. Unexpectedly, we discovered an additional PMI function in <i>Borrelia burgdorferi</i>, the pathogen of Lyme disease, where the enzyme is localized on the cell surface and binds to collagen IV-a host extracellular matrix component predominantly found in the skin. The AlphaFold 3-based structural model of <i>B. burgdorferi</i> PMI (BbPMI) retains the active site with tetrahedrally-coordinated Zn<sup>2+</sup> seen in other PMIs of known structure, residing in an elongated crevice. Ligand docking shows that the crevice can accommodate the tip trisaccharide moiety of a glycosylated asparagine residue on the collagen IV 7S domain. Low doses of a well-known PMI benzoisothiazolone inhibitor impair the growth of diverse strains of <i>B. burgdorferi</i> in culture, but not other tested Gram-negative or Gram-positive pathogens. <i>Borrelia</i> cells are even more susceptible to several other structurally related benzoisothiazolone analogs. The passive transfer of anti-BbPMI antibodies in ticks can impact spirochete transmission to mice, while the treatment of collagen IV-containing murine skin with PMI inhibitors impairs spirochete infectivity. Taken together, these results highlight a newly discovered role for BbPMI in mediating host-pathogen interactions during the spirochete infectivity process. In turn, this discovery offers an opportunity for the development of a novel therapeutic strategy to combat Lyme disease by preventing the BbPMI interaction with its host receptor, collagen IV.</p><p><strong>Importance: </strong>All organisms produce an intracellular enzyme, phosphomannose isomerase (PMI), that converts specific sugars during metabolism. Unexpectedly, we discovered an additional PMI function in <i>Borrelia burgdorferi</i>, the Lyme disease pathogen, where the enzyme is localized on the cell surface and binds to collagen IV-a host extracellular molecule mainly found in the skin. Low doses of PMI chemical inhibitors impair the growth of diverse strains of <i>B. burgdorferi</i> in culture, but not other tested bacterial pathogens. The passive transfer of anti-BbPMI antibodies in ticks can impact <i>B. burgdorferi</i> transmission to mice, while the treatment of collagen IV-containing murine skin with PMI inhibitors impairs infectivity. Taken together, these results highlight a newly discovered role for BbPMI in mediating host-pathogen interactions during infection. In turn, this discovery offers an opportunity for the development of a novel therapeutic strategy to combat Lyme disease by preventing BbPMI function and interaction with host collagen IV.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0360924"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03609-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

All organisms produce an intracellular Zn2+-dependent enzyme, phosphomannose isomerase (PMI) or mannose-6 phosphate isomerase, that catalyzes the reversible conversion of mannose-6-phosphate and fructose-6-phosphate during sugar metabolism and polysaccharide biosynthesis. Unexpectedly, we discovered an additional PMI function in Borrelia burgdorferi, the pathogen of Lyme disease, where the enzyme is localized on the cell surface and binds to collagen IV-a host extracellular matrix component predominantly found in the skin. The AlphaFold 3-based structural model of B. burgdorferi PMI (BbPMI) retains the active site with tetrahedrally-coordinated Zn2+ seen in other PMIs of known structure, residing in an elongated crevice. Ligand docking shows that the crevice can accommodate the tip trisaccharide moiety of a glycosylated asparagine residue on the collagen IV 7S domain. Low doses of a well-known PMI benzoisothiazolone inhibitor impair the growth of diverse strains of B. burgdorferi in culture, but not other tested Gram-negative or Gram-positive pathogens. Borrelia cells are even more susceptible to several other structurally related benzoisothiazolone analogs. The passive transfer of anti-BbPMI antibodies in ticks can impact spirochete transmission to mice, while the treatment of collagen IV-containing murine skin with PMI inhibitors impairs spirochete infectivity. Taken together, these results highlight a newly discovered role for BbPMI in mediating host-pathogen interactions during the spirochete infectivity process. In turn, this discovery offers an opportunity for the development of a novel therapeutic strategy to combat Lyme disease by preventing the BbPMI interaction with its host receptor, collagen IV.

Importance: All organisms produce an intracellular enzyme, phosphomannose isomerase (PMI), that converts specific sugars during metabolism. Unexpectedly, we discovered an additional PMI function in Borrelia burgdorferi, the Lyme disease pathogen, where the enzyme is localized on the cell surface and binds to collagen IV-a host extracellular molecule mainly found in the skin. Low doses of PMI chemical inhibitors impair the growth of diverse strains of B. burgdorferi in culture, but not other tested bacterial pathogens. The passive transfer of anti-BbPMI antibodies in ticks can impact B. burgdorferi transmission to mice, while the treatment of collagen IV-containing murine skin with PMI inhibitors impairs infectivity. Taken together, these results highlight a newly discovered role for BbPMI in mediating host-pathogen interactions during infection. In turn, this discovery offers an opportunity for the development of a novel therapeutic strategy to combat Lyme disease by preventing BbPMI function and interaction with host collagen IV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Exploring the interaction between endornavirus and Sclerotinia sclerotiorum: mechanisms of phytopathogenic fungal virulence and antivirus. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales. Microbiota does not influence tumor development in two models of heritable cancer. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1