Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes.

IF 5.9 1区 医学 Q1 ANESTHESIOLOGY PAIN® Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI:10.1097/j.pain.0000000000003508
Úrzula Franco-Enzástiga, Nikhil N Inturi, Keerthana Natarajan, Juliet M Mwirigi, Khadijah Mazhar, Johannes C M Schlachetzki, Mark Schumacher, Theodore J Price
{"title":"Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes.","authors":"Úrzula Franco-Enzástiga, Nikhil N Inturi, Keerthana Natarajan, Juliet M Mwirigi, Khadijah Mazhar, Johannes C M Schlachetzki, Mark Schumacher, Theodore J Price","doi":"10.1097/j.pain.0000000000003508","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.</p>","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":"166 3","pages":"614-630"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003508","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PAIN®
PAIN® 医学-临床神经学
CiteScore
12.50
自引率
8.10%
发文量
242
审稿时长
9 months
期刊介绍: PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.
期刊最新文献
Moderators of digital cognitive-behavioral therapy for youth with sickle cell disease pain: secondary analysis of a randomized controlled trial. Deep learning modelling of structural brain MRI in chronic head and neck pain after mild TBI. TRESK background potassium channel regulates MrgprA3 + pruriceptor excitability, acute and chronic itch. Pain sensation and emotion induced by aromatase inhibitors: a new mouse model. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1