Deep learning modelling of structural brain MRI in chronic head and neck pain after mild TBI.

IF 5.9 1区 医学 Q1 ANESTHESIOLOGY PAIN® Pub Date : 2025-03-12 DOI:10.1097/j.pain.0000000000003587
Sivan Attias, Roni Ramon-Gonen, Yaara Erez, Noam Bosak, Yelena Granovsky, Shahar Shelly
{"title":"Deep learning modelling of structural brain MRI in chronic head and neck pain after mild TBI.","authors":"Sivan Attias, Roni Ramon-Gonen, Yaara Erez, Noam Bosak, Yelena Granovsky, Shahar Shelly","doi":"10.1097/j.pain.0000000000003587","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Chronic headache is a common complication after mild traumatic brain injury (mTBI), which affects close to 70 million individuals annually worldwide. This study aims to test the utility of a unique, early predictive magnetic resonance imaging (MRI)-based classification model using structural brain MRI scans, a rarely used approach to identify high-risk individuals for post-mTBI chronic pain. We recruited 227 patients with mTBI after a vehicle collision, between March 30, 2016 and December 30, 2019. T1-weighted brain MRI scans from 128 patients within 72 hours postinjury were included and served as input for a pretrained 3D ResNet-18 deep learning model. All patients had initial assessments within the first 72 hours after the injury and performed follow-ups for 1 year. Chronic pain was reported in 43% at 12 months postinjury; remaining 57% were assigned to the recovery group. The best results were achieved for the axial plane with an average accuracy of 0.59 and an average area under the curve (AUC) of 0.56. Across the model's 8 folds. The highest performance across folds reached an AUC of 0.78, accuracy of 0.69, and recall of 0.83. Saliency maps highlighted the right insula, bilateral ventromedial prefrontal cortex, and periaqueductal gray matter as key regions. Our study provides insights at the intersection of neurology, neuroimaging, and predictive modeling, demonstrating that early T1-weighted MRI scans may offer useful information for predicting chronic head and neck pain. Saliency maps may help identify brain regions linked to chronic pain, representing an initial step toward targeted rehabilitation and early intervention for patients with mTBI to enhance clinical outcomes.</p>","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Chronic headache is a common complication after mild traumatic brain injury (mTBI), which affects close to 70 million individuals annually worldwide. This study aims to test the utility of a unique, early predictive magnetic resonance imaging (MRI)-based classification model using structural brain MRI scans, a rarely used approach to identify high-risk individuals for post-mTBI chronic pain. We recruited 227 patients with mTBI after a vehicle collision, between March 30, 2016 and December 30, 2019. T1-weighted brain MRI scans from 128 patients within 72 hours postinjury were included and served as input for a pretrained 3D ResNet-18 deep learning model. All patients had initial assessments within the first 72 hours after the injury and performed follow-ups for 1 year. Chronic pain was reported in 43% at 12 months postinjury; remaining 57% were assigned to the recovery group. The best results were achieved for the axial plane with an average accuracy of 0.59 and an average area under the curve (AUC) of 0.56. Across the model's 8 folds. The highest performance across folds reached an AUC of 0.78, accuracy of 0.69, and recall of 0.83. Saliency maps highlighted the right insula, bilateral ventromedial prefrontal cortex, and periaqueductal gray matter as key regions. Our study provides insights at the intersection of neurology, neuroimaging, and predictive modeling, demonstrating that early T1-weighted MRI scans may offer useful information for predicting chronic head and neck pain. Saliency maps may help identify brain regions linked to chronic pain, representing an initial step toward targeted rehabilitation and early intervention for patients with mTBI to enhance clinical outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PAIN®
PAIN® 医学-临床神经学
CiteScore
12.50
自引率
8.10%
发文量
242
审稿时长
9 months
期刊介绍: PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.
期刊最新文献
Moderators of digital cognitive-behavioral therapy for youth with sickle cell disease pain: secondary analysis of a randomized controlled trial. Deep learning modelling of structural brain MRI in chronic head and neck pain after mild TBI. TRESK background potassium channel regulates MrgprA3 + pruriceptor excitability, acute and chronic itch. Pain sensation and emotion induced by aromatase inhibitors: a new mouse model. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1