The Nematode Pristionchus pacificus Requires the Gβ and Gγ Proteins for Light Adaptation But Not For Light Avoidance.

IF 0.9 4区 生物学 Q3 ZOOLOGY Zoological Science Pub Date : 2025-02-01 DOI:10.2108/zs240073
Aya Manabe, Keimei Ko, Kenichi Nakayama, Takahiro Chihara, Misako Okumura
{"title":"The Nematode <i>Pristionchus pacificus</i> Requires the Gβ and Gγ Proteins for Light Adaptation But Not For Light Avoidance.","authors":"Aya Manabe, Keimei Ko, Kenichi Nakayama, Takahiro Chihara, Misako Okumura","doi":"10.2108/zs240073","DOIUrl":null,"url":null,"abstract":"<p><p>Most organisms can sense and adapt to a wide range of light intensities. Although animals commonly use opsins for light detection, the nematode <i>Pristionchus pacificus</i> lacks conserved photoreceptors. The cyclic GMP signaling pathway and G protein-coupled receptor kinase are essential for light-avoidance behavior in <i>P. pacificus</i>. Although the mechanism of light sensing in <i>P. pacificus</i> has been partially elucidated, it remains unclear whether, and how, <i>P. pacificus</i> adapts to light. Here, we found that prior exposure to light reduced the frequency of light-avoidance behavior in <i>P. pacificus</i>, indicating its ability to adapt to light. To reveal the mechanism of light adaptation in <i>P. pacificus</i>, we used CRISPR/Cas9 genome editing to generate Gβ and Gγ subunit mutants, as these subunits are involved in chemosensory adaptation in the nematode <i>Caenorhabditis elegans</i>. Gβ and Gγ subunit mutants exhibited light-avoidance behavior similar to that of the wild type, but light adaptation was impaired in the Gβ mutants. Similarly, the Gγ and arrestin mutants showed minor abnormalities in light adaptation. These findings suggest that these proteins play a role in sensory adaptation beyond that in chemosensation and could contribute to light response mechanisms in nematodes.</p>","PeriodicalId":24040,"journal":{"name":"Zoological Science","volume":"42 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2108/zs240073","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most organisms can sense and adapt to a wide range of light intensities. Although animals commonly use opsins for light detection, the nematode Pristionchus pacificus lacks conserved photoreceptors. The cyclic GMP signaling pathway and G protein-coupled receptor kinase are essential for light-avoidance behavior in P. pacificus. Although the mechanism of light sensing in P. pacificus has been partially elucidated, it remains unclear whether, and how, P. pacificus adapts to light. Here, we found that prior exposure to light reduced the frequency of light-avoidance behavior in P. pacificus, indicating its ability to adapt to light. To reveal the mechanism of light adaptation in P. pacificus, we used CRISPR/Cas9 genome editing to generate Gβ and Gγ subunit mutants, as these subunits are involved in chemosensory adaptation in the nematode Caenorhabditis elegans. Gβ and Gγ subunit mutants exhibited light-avoidance behavior similar to that of the wild type, but light adaptation was impaired in the Gβ mutants. Similarly, the Gγ and arrestin mutants showed minor abnormalities in light adaptation. These findings suggest that these proteins play a role in sensory adaptation beyond that in chemosensation and could contribute to light response mechanisms in nematodes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoological Science
Zoological Science 生物-动物学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
1 months
期刊介绍: Zoological Science is published by the Zoological Society of Japan and devoted to publication of original articles, reviews and editorials that cover the broad field of zoology. The journal was founded in 1984 as a result of the consolidation of Zoological Magazine (1888–1983) and Annotationes Zoologicae Japonenses (1897–1983), the former official journals of the Zoological Society of Japan. Each annual volume consists of six regular issues, one every two months.
期刊最新文献
Environmentally Dependent Alteration of Reproductive Strategies and Juvenile Hormone Signaling in Daphnia (Crustacea: Cladocera). Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Convergent Gene Duplication in Arctic and Antarctic Teleost Fishes. Dive Deep: Bioenergetic Adaptation of Deep-Sea Animals. The Nematode Pristionchus pacificus Requires the Gβ and Gγ Proteins for Light Adaptation But Not For Light Avoidance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1