Hierarchical Bayesian bivariate spatial modeling of small area proportions with application to health survey data.

IF 1.9 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-05-01 Epub Date: 2025-02-11 DOI:10.1177/09622802251316968
Hanjun Yu, Xinyi Xu, Lichao Yu
{"title":"Hierarchical Bayesian bivariate spatial modeling of small area proportions with application to health survey data.","authors":"Hanjun Yu, Xinyi Xu, Lichao Yu","doi":"10.1177/09622802251316968","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we propose bivariate small area estimation methods for proportions based on the logit-normal mixed models with latent spatial dependence. We incorporate multivariate conditional autoregressive structures for the random effects under the hierarchical Bayesian modeling framework, and extend the methods to accommodate non-sampled regions. Posterior inference is obtained via adaptive Markov chain Monte Carlo algorithms. Extensive simulation studies are carried out to demonstrate the effectiveness of the proposed bivariate spatial models. The results suggest that the proposed methods are more efficient than the univariate and non-spatial methods in estimation and prediction, particularly when bivariate spatial dependence exists. Practical guidelines for model selection based on the simulation results are provided. We further illustrate the application of our methods by estimating the province-level heart disease rates and dyslipidemia rates among the middle-aged and elderly population in China's 31 mainland provinces in 2020.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1018-1036"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251316968","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose bivariate small area estimation methods for proportions based on the logit-normal mixed models with latent spatial dependence. We incorporate multivariate conditional autoregressive structures for the random effects under the hierarchical Bayesian modeling framework, and extend the methods to accommodate non-sampled regions. Posterior inference is obtained via adaptive Markov chain Monte Carlo algorithms. Extensive simulation studies are carried out to demonstrate the effectiveness of the proposed bivariate spatial models. The results suggest that the proposed methods are more efficient than the univariate and non-spatial methods in estimation and prediction, particularly when bivariate spatial dependence exists. Practical guidelines for model selection based on the simulation results are provided. We further illustrate the application of our methods by estimating the province-level heart disease rates and dyslipidemia rates among the middle-aged and elderly population in China's 31 mainland provinces in 2020.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于健康调查数据的小面积比例的层次贝叶斯双变量空间建模。
在本文中,我们提出了基于潜在空间依赖的对数-正态混合模型的二元小面积比例估计方法。我们在分层贝叶斯建模框架下引入了多变量条件自回归结构来处理随机效应,并扩展了该方法以适应非采样区域。后验推理采用自适应马尔可夫链蒙特卡罗算法。进行了大量的模拟研究,以证明所提出的二元空间模型的有效性。结果表明,该方法在估计和预测方面比单变量和非空间方法更有效,特别是在存在二元空间依赖性的情况下。给出了基于仿真结果的模型选择的实用指南。我们通过估计2020年中国大陆31个省份中老年人口的省级心脏病发病率和血脂异常率进一步说明了我们的方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Dynamic prediction of death risk given a renewal hospitalization process. Two stage least squares with time-varying instruments: An application to an evaluation of treatment intensification for type-2 diabetes. Joint mixed-effects models for causal inference in clustered network-based observational studies. The use of the EM algorithm for regularization problems in high-dimensional linear mixed-effects models. Dynamic prediction by landmarking with data from cohort subsampling designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1