Statistical considerations for evaluating treatment effect under various non-proportional hazard scenarios.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-02-11 DOI:10.1177/09622802241313297
Xinyu Zhang, Erich J Greene, Ondrej Blaha, Wei Wei
{"title":"Statistical considerations for evaluating treatment effect under various non-proportional hazard scenarios.","authors":"Xinyu Zhang, Erich J Greene, Ondrej Blaha, Wei Wei","doi":"10.1177/09622802241313297","DOIUrl":null,"url":null,"abstract":"<p><p>We conducted a systematic comparison of statistical methods used for the analysis of time-to-event outcomes under various proportional and non-proportional hazard (NPH) scenarios. Our study used data from recently published oncology trials to compare the Log-rank test, still by far the most widely used option, against some available alternatives, including the MaxCombo test, the Restricted Mean Survival Time difference test, the Generalized Gamma model and the Generalized F model. Power, type I error rate, and time-dependent bias with respect to the survival probability and median survival time were used to evaluate and compare the performance of these methods. In addition to the real data, we simulated three hypothetical scenarios with crossing hazards chosen so that the early and late effects \"cancel out\" and used them to evaluate the ability of the aforementioned methods to detect time-specific and overall treatment effects. We implemented novel metrics for assessing the time-dependent bias in treatment effect estimates to provide a more comprehensive evaluation in NPH scenarios. Recommendations under each NPH scenario are provided by examining the type I error rate, power, and time-dependent bias associated with each statistical approach.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241313297"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241313297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted a systematic comparison of statistical methods used for the analysis of time-to-event outcomes under various proportional and non-proportional hazard (NPH) scenarios. Our study used data from recently published oncology trials to compare the Log-rank test, still by far the most widely used option, against some available alternatives, including the MaxCombo test, the Restricted Mean Survival Time difference test, the Generalized Gamma model and the Generalized F model. Power, type I error rate, and time-dependent bias with respect to the survival probability and median survival time were used to evaluate and compare the performance of these methods. In addition to the real data, we simulated three hypothetical scenarios with crossing hazards chosen so that the early and late effects "cancel out" and used them to evaluate the ability of the aforementioned methods to detect time-specific and overall treatment effects. We implemented novel metrics for assessing the time-dependent bias in treatment effect estimates to provide a more comprehensive evaluation in NPH scenarios. Recommendations under each NPH scenario are provided by examining the type I error rate, power, and time-dependent bias associated with each statistical approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Extension of Fisher's least significant difference method to multi-armed group-sequential response-adaptive designs. Generalized framework for identifying meaningful heterogenous treatment effects in observational studies: A parametric data-adaptive G-computation approach. The relative efficiency of staircase and stepped wedge cluster randomised trial designs. Bayesian mixture models for phylogenetic source attribution from consensus sequences and time since infection estimates. Jointly assessing multiple endpoints in pilot and feasibility studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1