Interpretable Machine Learning to Predict the Malignancy Risk of Follicular Thyroid Neoplasms in Extremely Unbalanced Data: Retrospective Cohort Study and Literature Review.

IF 3.3 Q2 ONCOLOGY JMIR Cancer Pub Date : 2025-02-10 DOI:10.2196/66269
Rui Shan, Xin Li, Jing Chen, Zheng Chen, Yuan-Jia Cheng, Bo Han, Run-Ze Hu, Jiu-Ping Huang, Gui-Lan Kong, Hui Liu, Fang Mei, Shi-Bing Song, Bang-Kai Sun, Hui Tian, Yang Wang, Wu-Cai Xiao, Xiang-Yun Yao, Jing-Ming Ye, Bo Yu, Chun-Hui Yuan, Fan Zhang, Zheng Liu
{"title":"Interpretable Machine Learning to Predict the Malignancy Risk of Follicular Thyroid Neoplasms in Extremely Unbalanced Data: Retrospective Cohort Study and Literature Review.","authors":"Rui Shan, Xin Li, Jing Chen, Zheng Chen, Yuan-Jia Cheng, Bo Han, Run-Ze Hu, Jiu-Ping Huang, Gui-Lan Kong, Hui Liu, Fang Mei, Shi-Bing Song, Bang-Kai Sun, Hui Tian, Yang Wang, Wu-Cai Xiao, Xiang-Yun Yao, Jing-Ming Ye, Bo Yu, Chun-Hui Yuan, Fan Zhang, Zheng Liu","doi":"10.2196/66269","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diagnosing and managing follicular thyroid neoplasms (FTNs) remains a significant challenge, as the malignancy risk cannot be determined until after diagnostic surgery.</p><p><strong>Objective: </strong>We aimed to use interpretable machine learning to predict the malignancy risk of FTNs preoperatively in a real-world setting.</p><p><strong>Methods: </strong>We conducted a retrospective cohort study at the Peking University Third Hospital in Beijing, China. Patients with postoperative pathological diagnoses of follicular thyroid adenoma (FTA) or follicular thyroid carcinoma (FTC) were included, excluding those without preoperative thyroid ultrasonography. We used 22 predictors involving demographic characteristics, thyroid sonography, and hormones to train 5 machine learning models: logistic regression, least absolute shrinkage and selection operator regression, random forest, extreme gradient boosting, and support vector machine. The optimal model was selected based on discrimination, calibration, interpretability, and parsimony. To address the highly imbalanced data (FTA:FTC ratio>5:1), model discrimination was assessed using both the area under the receiver operating characteristic curve and the area under the precision-recall curve (AUPRC). To interpret the model, we used Shapley Additive Explanations values and partial dependence and individual conditional expectation plots. Additionally, a systematic review was performed to synthesize existing evidence and validate the discrimination ability of the previously developed Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria to differentiate between benign and malignant FTNs using our data.</p><p><strong>Results: </strong>The cohort included 1539 patients (mean age 47.98, SD 14.15 years; female: n=1126, 73.16%) with 1672 FTN tumors (FTA: n=1414; FTC: n=258; FTA:FTC ratio=5.5). The random forest model emerged as optimal, identifying mean thyroid-stimulating hormone (TSH) score, mean tumor diameter, mean TSH, TSH instability, and TSH measurement levels as the top 5 predictors in discriminating FTA from FTC, with the area under the receiver operating characteristic curve of 0.79 (95% CI 0.77-0.81) and AUPRC of 0.40 (95% CI 0.37-0.44). Malignancy risk increased nonlinearly with larger tumor diameters and higher TSH instability but decreased nonlinearly with higher mean TSH scores or mean TSH levels. FTCs with small sizes (mean diameter 2.88, SD 1.38 cm) were more likely to be misclassified as FTAs compared to larger ones (mean diameter 3.71, SD 1.36 cm). The systematic review of the 7 included studies revealed that (1) the FTA:FTC ratio varied from 0.6 to 4.0, lower than the natural distribution of 5.0; (2) no studies assessed prediction performance using AUPRC in unbalanced datasets; and (3) external validations of Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria underperformed relative to the original study.</p><p><strong>Conclusions: </strong>Tumor size and TSH measurements were important in screening FTN malignancy risk preoperatively, but accurately predicting the risk of small-sized FTNs remains challenging. Future research should address the limitations posed by the extreme imbalance in FTA and FTC distributions in real-world data.</p>","PeriodicalId":45538,"journal":{"name":"JMIR Cancer","volume":"11 ","pages":"e66269"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/66269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diagnosing and managing follicular thyroid neoplasms (FTNs) remains a significant challenge, as the malignancy risk cannot be determined until after diagnostic surgery.

Objective: We aimed to use interpretable machine learning to predict the malignancy risk of FTNs preoperatively in a real-world setting.

Methods: We conducted a retrospective cohort study at the Peking University Third Hospital in Beijing, China. Patients with postoperative pathological diagnoses of follicular thyroid adenoma (FTA) or follicular thyroid carcinoma (FTC) were included, excluding those without preoperative thyroid ultrasonography. We used 22 predictors involving demographic characteristics, thyroid sonography, and hormones to train 5 machine learning models: logistic regression, least absolute shrinkage and selection operator regression, random forest, extreme gradient boosting, and support vector machine. The optimal model was selected based on discrimination, calibration, interpretability, and parsimony. To address the highly imbalanced data (FTA:FTC ratio>5:1), model discrimination was assessed using both the area under the receiver operating characteristic curve and the area under the precision-recall curve (AUPRC). To interpret the model, we used Shapley Additive Explanations values and partial dependence and individual conditional expectation plots. Additionally, a systematic review was performed to synthesize existing evidence and validate the discrimination ability of the previously developed Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria to differentiate between benign and malignant FTNs using our data.

Results: The cohort included 1539 patients (mean age 47.98, SD 14.15 years; female: n=1126, 73.16%) with 1672 FTN tumors (FTA: n=1414; FTC: n=258; FTA:FTC ratio=5.5). The random forest model emerged as optimal, identifying mean thyroid-stimulating hormone (TSH) score, mean tumor diameter, mean TSH, TSH instability, and TSH measurement levels as the top 5 predictors in discriminating FTA from FTC, with the area under the receiver operating characteristic curve of 0.79 (95% CI 0.77-0.81) and AUPRC of 0.40 (95% CI 0.37-0.44). Malignancy risk increased nonlinearly with larger tumor diameters and higher TSH instability but decreased nonlinearly with higher mean TSH scores or mean TSH levels. FTCs with small sizes (mean diameter 2.88, SD 1.38 cm) were more likely to be misclassified as FTAs compared to larger ones (mean diameter 3.71, SD 1.36 cm). The systematic review of the 7 included studies revealed that (1) the FTA:FTC ratio varied from 0.6 to 4.0, lower than the natural distribution of 5.0; (2) no studies assessed prediction performance using AUPRC in unbalanced datasets; and (3) external validations of Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria underperformed relative to the original study.

Conclusions: Tumor size and TSH measurements were important in screening FTN malignancy risk preoperatively, but accurately predicting the risk of small-sized FTNs remains challenging. Future research should address the limitations posed by the extreme imbalance in FTA and FTC distributions in real-world data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Cancer
JMIR Cancer ONCOLOGY-
CiteScore
4.10
自引率
0.00%
发文量
64
审稿时长
12 weeks
期刊最新文献
Challenges of Cross-Sectoral Video Consultation in Cancer Care on Patients' Perceived Coordination: Randomized Controlled Trial. Interpretable Machine Learning to Predict the Malignancy Risk of Follicular Thyroid Neoplasms in Extremely Unbalanced Data: Retrospective Cohort Study and Literature Review. An App-Based Intervention With Behavioral Support to Promote Brisk Walking in People Diagnosed With Breast, Prostate, or Colorectal Cancer (APPROACH): Process Evaluation Study. Barriers and Facilitators to the Preadoption of a Computer-Aided Diagnosis Tool for Cervical Cancer: Qualitative Study on Health Care Providers' Perspectives in Western Cameroon. The Effect of Nutritional Mobile Apps on Populations With Cancer: Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1