Natalia Erofeeva , David S. Galstyan , Longen Yang , Tatiana Strekalova , Lee Wei Lim , Murilo S. de Abreu , Nikita I. Golushko , Adam Michael Stewart , Allan V. Kalueff
{"title":"Developing zebrafish models of Notch-related CNS pathologies","authors":"Natalia Erofeeva , David S. Galstyan , Longen Yang , Tatiana Strekalova , Lee Wei Lim , Murilo S. de Abreu , Nikita I. Golushko , Adam Michael Stewart , Allan V. Kalueff","doi":"10.1016/j.neubiorev.2025.106059","DOIUrl":null,"url":null,"abstract":"<div><div>Notch signaling is an evolutionarily conserved cellular pathway that regulates various stem cell functions, including fate determination, differentiation, proliferation, and apoptosis. This crucial signaling mechanism also plays an important role in the brain, regulating neurogenesis, cell differentiation, and homeostasis, whereas disrupted Notch signaling is linked to various neurodegenerative diseases and brain cancers. Here, we review the central nervous system (CNS) pathologies associated with aberrant Notch signaling, and summarize the available experimental (animal) models used to study these pathologies, with a special focus on zebrafish (<em>Danio rerio</em>). As genetic, pharmacological, and behavioral models in zebrafish have significantly advanced our understanding of Notch-related CNS disorders, future research is expected to further link Notch signaling to brain disorders and, eventually, lead to their more specific and targeted therapeuties.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"170 ","pages":"Article 106059"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763425000594","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Notch signaling is an evolutionarily conserved cellular pathway that regulates various stem cell functions, including fate determination, differentiation, proliferation, and apoptosis. This crucial signaling mechanism also plays an important role in the brain, regulating neurogenesis, cell differentiation, and homeostasis, whereas disrupted Notch signaling is linked to various neurodegenerative diseases and brain cancers. Here, we review the central nervous system (CNS) pathologies associated with aberrant Notch signaling, and summarize the available experimental (animal) models used to study these pathologies, with a special focus on zebrafish (Danio rerio). As genetic, pharmacological, and behavioral models in zebrafish have significantly advanced our understanding of Notch-related CNS disorders, future research is expected to further link Notch signaling to brain disorders and, eventually, lead to their more specific and targeted therapeuties.
期刊介绍:
The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.