Proteogenomic analysis reveals adaptive strategies for alleviating the consequences of aneuploidy in cancer.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2025-03-01 Epub Date: 2025-02-10 DOI:10.1038/s44318-025-00372-w
Jan-Eric Bökenkamp, Kristina Keuper, Stefan Redel, Karen Barthel, Leah Johnson, Amelie Becker, Angela Wieland, Markus Räschle, Zuzana Storchová
{"title":"Proteogenomic analysis reveals adaptive strategies for alleviating the consequences of aneuploidy in cancer.","authors":"Jan-Eric Bökenkamp, Kristina Keuper, Stefan Redel, Karen Barthel, Leah Johnson, Amelie Becker, Angela Wieland, Markus Räschle, Zuzana Storchová","doi":"10.1038/s44318-025-00372-w","DOIUrl":null,"url":null,"abstract":"<p><p>Aneuploidy is prevalent in cancer and associates with fitness advantage and poor patient prognosis. Yet, experimentally induced aneuploidy initially leads to adverse effects and impaired proliferation, suggesting that cancer cells must adapt to aneuploidy. We performed in vitro evolution of cells with extra chromosomes and obtained cell lines with improved proliferation and gene expression changes congruent with changes in aneuploid cancers. Integrated analysis of cancer multi-omics data and model cells revealed increased expression of DNA replicative and repair factors, reduced genomic instability, and reduced lysosomal degradation. We identified E2F4 and FOXM1 as transcription factors strongly associated with adaptation to aneuploidy in vitro and in cancers and validated this finding. The adaptation to aneuploidy also coincided with specific copy number aberrations that correlate with poor patient prognosis. Chromosomal engineering mimicking these aberrations improved aneuploid cell proliferation, while loss of previously present extra chromosomes impaired it. The identified common adaptation strategies suggest replication stress, genomic instability, and lysosomal stress as common liabilities of aneuploid cancers.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"1829-1865"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00372-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aneuploidy is prevalent in cancer and associates with fitness advantage and poor patient prognosis. Yet, experimentally induced aneuploidy initially leads to adverse effects and impaired proliferation, suggesting that cancer cells must adapt to aneuploidy. We performed in vitro evolution of cells with extra chromosomes and obtained cell lines with improved proliferation and gene expression changes congruent with changes in aneuploid cancers. Integrated analysis of cancer multi-omics data and model cells revealed increased expression of DNA replicative and repair factors, reduced genomic instability, and reduced lysosomal degradation. We identified E2F4 and FOXM1 as transcription factors strongly associated with adaptation to aneuploidy in vitro and in cancers and validated this finding. The adaptation to aneuploidy also coincided with specific copy number aberrations that correlate with poor patient prognosis. Chromosomal engineering mimicking these aberrations improved aneuploid cell proliferation, while loss of previously present extra chromosomes impaired it. The identified common adaptation strategies suggest replication stress, genomic instability, and lysosomal stress as common liabilities of aneuploid cancers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
A new hybrid post-translational modification-have you lost your (MARUb)les? Author Correction: Drosophila Alms1 proteins regulate centriolar cartwheel assembly by enabling Plk4-Ana2 amplification loop. Nanoscale analysis of human G1 and metaphase chromatin in situ. A versatile toolbox for determining IRES activity in cells and embryonic tissues. An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1