Decoding Cattle (Bos taurus) Diacylglycerol Acyltransferase (DGAT) Gene Families: A Pathway to Functional Understanding.

IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Journal of Heredity Pub Date : 2025-02-11 DOI:10.1093/jhered/esae079
Effat Nasre Esfahani, Saeid Ansari Mahyari, Peymaneh Davoodi, Mostafa Ghaderi-Zefrehei, Bluma J Lesch
{"title":"Decoding Cattle (Bos taurus) Diacylglycerol Acyltransferase (DGAT) Gene Families: A Pathway to Functional Understanding.","authors":"Effat Nasre Esfahani, Saeid Ansari Mahyari, Peymaneh Davoodi, Mostafa Ghaderi-Zefrehei, Bluma J Lesch","doi":"10.1093/jhered/esae079","DOIUrl":null,"url":null,"abstract":"<p><p>Diacylglycerol acyltransferases (DGAT) are key enzymes in fat storage, converting diacylglycerol and fatty acyl CoA into triacylglycerol. In cattle (Bos taurus), the DGAT1 and DGAT2 genes are well-known for their significant influence on milk production traits, particularly milk fat yield and percentage. However, the cattle genome contains twelve other DGAT gene family members that remain largely uncharacterized. The research examined the genetic makeup of these DGAT proteins, revealing differences in exon count, isoforms, amino acid composition, molecular weight, isoelectric points, and predicted SNP locations. The genes are distributed across five chromosomes (2, 14, 15, 25, and X), and the expansion of this gene family in cattle is likely the result of gene duplication events, driven by specific motifs that favor such duplication. By identifying these distinctions, the study provides foundational insights into the lesser-known DGAT genes, which could be involved in regulating important traits like milk fat production. This comprehensive in silico analysis of the DGAT gene family offers valuable insights into the genetic and structural diversity of these enzymes in cattle. It also establishes a platform for future research into functional SNPs and their potential role in improving milk fat production traits, contributing to the advancement of cattle genetics and dairy production optimization. To this end, the identification of previously uncharacterized DGAT genes and their possible involvement in milk fat synthesis could pave the way for innovative breeding strategies focused on improving both milk yield and fat content in dairy cattle.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esae079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diacylglycerol acyltransferases (DGAT) are key enzymes in fat storage, converting diacylglycerol and fatty acyl CoA into triacylglycerol. In cattle (Bos taurus), the DGAT1 and DGAT2 genes are well-known for their significant influence on milk production traits, particularly milk fat yield and percentage. However, the cattle genome contains twelve other DGAT gene family members that remain largely uncharacterized. The research examined the genetic makeup of these DGAT proteins, revealing differences in exon count, isoforms, amino acid composition, molecular weight, isoelectric points, and predicted SNP locations. The genes are distributed across five chromosomes (2, 14, 15, 25, and X), and the expansion of this gene family in cattle is likely the result of gene duplication events, driven by specific motifs that favor such duplication. By identifying these distinctions, the study provides foundational insights into the lesser-known DGAT genes, which could be involved in regulating important traits like milk fat production. This comprehensive in silico analysis of the DGAT gene family offers valuable insights into the genetic and structural diversity of these enzymes in cattle. It also establishes a platform for future research into functional SNPs and their potential role in improving milk fat production traits, contributing to the advancement of cattle genetics and dairy production optimization. To this end, the identification of previously uncharacterized DGAT genes and their possible involvement in milk fat synthesis could pave the way for innovative breeding strategies focused on improving both milk yield and fat content in dairy cattle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Heredity
Journal of Heredity 生物-遗传学
CiteScore
5.20
自引率
6.50%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal. Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.
期刊最新文献
Cytogenomic analysis in Seriemas (Cariamidae): Insights into an Atypical Avian Karyotype. Non-invasive sampling reveals landscape genetic structure in the threatened ghost bat (Macroderma gigas) in an ore-rich region of Western Australia. Evidence for the existence of the distinct Alia camel breed contributes to the conservation of dromedary camels in Europe. Microplastic exposure is associated with epigenomic effects in the model organism Pimephales promelas (fathead minnow). Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1