Transcription factor XBP1s promotes endometritis-induced epithelial-mesenchymal transition by targeting MAP3K2, a key gene in the MAPK/ERK pathway.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-02-10 DOI:10.1186/s12964-025-02050-0
Kangkang Gao, Mengqi Si, Xinxi Qin, Beibei Zhang, Zongjie Wang, Pengfei Lin, Huatao Chen, Aihua Wang, Yaping Jin
{"title":"Transcription factor XBP1s promotes endometritis-induced epithelial-mesenchymal transition by targeting MAP3K2, a key gene in the MAPK/ERK pathway.","authors":"Kangkang Gao, Mengqi Si, Xinxi Qin, Beibei Zhang, Zongjie Wang, Pengfei Lin, Huatao Chen, Aihua Wang, Yaping Jin","doi":"10.1186/s12964-025-02050-0","DOIUrl":null,"url":null,"abstract":"<p><p>The epithelial-mesenchymal transition (EMT) is a biological process whereby epithelial cells are transformed into cells with a mesenchymal phenotype. The transcription factor, X-box binding protein 1 splicing variant (XBP1s) is a key regulator of the endoplasmic reticulum stress response (ERS); but the function of XBP1s in the endometritis-induced EMT process remains unclear. Here we found that uterine tissues from goats with endometritis exhibited an EMT phenotype, with a significant decrease in the epithelial cell polarity marker E-cadherin and a significant increase in the mesenchymal markers N-cadherin and vimentin. We also found that sustained LPS treatment induced EMT in goat endometrial epithelial cells (gEECs), along with ERS and XBP1s overexpression. XBP1s KO significantly inhibited LPS-induced EMT and migration in gEECs, while XBP1s overexpression showed the opposite result. CUT & Tag experiments performed on XBP1s revealed that MAP3K2 was a downstream target gene for XBP1s regulation. We also found that expression of MAP3K2 was positively correlated with XBP1s expression in uterine tissues of goats with endometritis and in gEECs. Assays for dual luciferase reporter and molecular docking indicated that XBP1s protein regulated the transcription of MAP3K2 by modulating promoter activity. The knockdown of MAP3K2 expression significantly inhibited the migration and EMT of gEECs. XBP1s and MAP3K2 significantly promoted phosphorylation of p38 and ERK, activating the MAPK/ERK pathway. Treatment with the MAPK/ERK inhibitor, PD98059, reversed the effects of XBP1s and MAP3K2 overexpression on LPS-induced EMT. The MAPK/ERK activator, DHC, reversed the effects of XBP1s KO and MAP3K2 KD on EMT.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"72"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02050-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The epithelial-mesenchymal transition (EMT) is a biological process whereby epithelial cells are transformed into cells with a mesenchymal phenotype. The transcription factor, X-box binding protein 1 splicing variant (XBP1s) is a key regulator of the endoplasmic reticulum stress response (ERS); but the function of XBP1s in the endometritis-induced EMT process remains unclear. Here we found that uterine tissues from goats with endometritis exhibited an EMT phenotype, with a significant decrease in the epithelial cell polarity marker E-cadherin and a significant increase in the mesenchymal markers N-cadherin and vimentin. We also found that sustained LPS treatment induced EMT in goat endometrial epithelial cells (gEECs), along with ERS and XBP1s overexpression. XBP1s KO significantly inhibited LPS-induced EMT and migration in gEECs, while XBP1s overexpression showed the opposite result. CUT & Tag experiments performed on XBP1s revealed that MAP3K2 was a downstream target gene for XBP1s regulation. We also found that expression of MAP3K2 was positively correlated with XBP1s expression in uterine tissues of goats with endometritis and in gEECs. Assays for dual luciferase reporter and molecular docking indicated that XBP1s protein regulated the transcription of MAP3K2 by modulating promoter activity. The knockdown of MAP3K2 expression significantly inhibited the migration and EMT of gEECs. XBP1s and MAP3K2 significantly promoted phosphorylation of p38 and ERK, activating the MAPK/ERK pathway. Treatment with the MAPK/ERK inhibitor, PD98059, reversed the effects of XBP1s and MAP3K2 overexpression on LPS-induced EMT. The MAPK/ERK activator, DHC, reversed the effects of XBP1s KO and MAP3K2 KD on EMT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Cullin-RING ligase BioE3 reveals molecular-glue-induced neosubstrates and rewiring of the endogenous Cereblon ubiquitome. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects. Functions of the Muscleblind-like protein family and their role in disease. REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1