{"title":"[Transcriptome sequencing reveals molecular mechanism of seed dormancy release of Zanthoxylum nitidum].","authors":"Chang-Qian Quan, Dan-Feng Tang, Jian-Ping Jiang, Yan-Xia Zhu","doi":"10.19540/j.cnki.cjcmm.20241014.103","DOIUrl":null,"url":null,"abstract":"<p><p>The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 1","pages":"102-110"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo Zhongyao Zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19540/j.cnki.cjcmm.20241014.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.