Barbigerone against Lipopolysaccharide-Induced Memory Deficit in Rodents via Alteration of Inflammatory and Oxidative Stress Pathway: In vivo and Molecular Dynamics Simulations Study.

Muhammad Shahid Nadeem, Jalaluddin Azam Khan, Fahad A Al-Abbasi, May M Alqurashi, Azizah Salim Bawadood, Sami I Alzarea, Nadeem Sayyed, Gaurav Gupta, Imran Kazmi
{"title":"Barbigerone against Lipopolysaccharide-Induced Memory Deficit in Rodents via Alteration of Inflammatory and Oxidative Stress Pathway: In vivo and Molecular Dynamics Simulations Study.","authors":"Muhammad Shahid Nadeem, Jalaluddin Azam Khan, Fahad A Al-Abbasi, May M Alqurashi, Azizah Salim Bawadood, Sami I Alzarea, Nadeem Sayyed, Gaurav Gupta, Imran Kazmi","doi":"10.2174/0118715273332347250122112850","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Memory loss and cognitive decline are prominent symptoms of various neurodegenerative diseases, impacting daily activities and posing a significant burden on healthcare systems. The study aimed to explore the effect of barbigerone against LPS-induced memory impairment in rats and may offer novel therapeutics for neurodegenerative diseases.</p><p><strong>Methods: </strong>A total of 30 male Wistar rats were utilized and subsequently divided into five distinct experimental groups: group I received saline water as a control, group II- received LPS, group III - received LPS, and barbigerone (10 mg/kg/p.o.), group IV- received LPS and a higher dose of barbigerone (20 mg/kg/p.o.), and group V -barbigerone alone (20 mg/kg/p.o.). Behavioural test was performed through the Morris water maze and Y-maze test. Biochemical markers such as oxidative, proinflammatory, apoptotic, and further molecular docking and simulations elucidate the mechanisms of barbigerone effects.</p><p><strong>Results: </strong>Barbigerone significantly improved the learning capacity of rats in both the MWM and Ymaze tests, indicating enhanced memory and reduced latency times. Furthermore, barbigerone exhibited beneficial effects on oxidative stress and inflammation markers, suggesting its potential to protect against neuronal damage and promote cognitive function. Based on molecular docking, barbigerone showed a greater binding affinity with different intermolecular interactions; among them, NF-KB (ISVC) had the most potent interaction. Molecular dynamics simulations were performed to assess the stability and convergence of complexes formed by Barbigerone with 1NME_ Barbigerone, 1SVC_Barbigerone, and 4AQ3 4AQ3_Barbigerone.</p><p><strong>Conclusion: </strong>These findings demonstrate that barbigerone possesses neuronal protective effects against LPS-induced memory deficits in rats by restoring endogenous antioxidant and pro-inflammatory cytokines.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273332347250122112850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Memory loss and cognitive decline are prominent symptoms of various neurodegenerative diseases, impacting daily activities and posing a significant burden on healthcare systems. The study aimed to explore the effect of barbigerone against LPS-induced memory impairment in rats and may offer novel therapeutics for neurodegenerative diseases.

Methods: A total of 30 male Wistar rats were utilized and subsequently divided into five distinct experimental groups: group I received saline water as a control, group II- received LPS, group III - received LPS, and barbigerone (10 mg/kg/p.o.), group IV- received LPS and a higher dose of barbigerone (20 mg/kg/p.o.), and group V -barbigerone alone (20 mg/kg/p.o.). Behavioural test was performed through the Morris water maze and Y-maze test. Biochemical markers such as oxidative, proinflammatory, apoptotic, and further molecular docking and simulations elucidate the mechanisms of barbigerone effects.

Results: Barbigerone significantly improved the learning capacity of rats in both the MWM and Ymaze tests, indicating enhanced memory and reduced latency times. Furthermore, barbigerone exhibited beneficial effects on oxidative stress and inflammation markers, suggesting its potential to protect against neuronal damage and promote cognitive function. Based on molecular docking, barbigerone showed a greater binding affinity with different intermolecular interactions; among them, NF-KB (ISVC) had the most potent interaction. Molecular dynamics simulations were performed to assess the stability and convergence of complexes formed by Barbigerone with 1NME_ Barbigerone, 1SVC_Barbigerone, and 4AQ3 4AQ3_Barbigerone.

Conclusion: These findings demonstrate that barbigerone possesses neuronal protective effects against LPS-induced memory deficits in rats by restoring endogenous antioxidant and pro-inflammatory cytokines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Markers and Diagnostics for Diagnosing Cerebral Infarction. Abnormality of Voltage-Gated Sodium Channels in Disease Development of the Nervous System. A Review Article. Recent Trends in Physical Therapy Interventions and Neuromodulation Techniques to Improve Neurorehabilitation. Barbigerone against Lipopolysaccharide-Induced Memory Deficit in Rodents via Alteration of Inflammatory and Oxidative Stress Pathway: In vivo and Molecular Dynamics Simulations Study. Sweroside Modulates Oxidative Stress and Neuroplasticity-Related Gene Expression in Scopolamine-Treated Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1