Temporal phosphoproteomics reveals circuitry of phased propagation in insulin signaling

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-02-12 DOI:10.1038/s41467-025-56335-6
Michael Turewicz, Christine Skagen, Sonja Hartwig, Stephan Majda, Kristina Thedinga, Ralf Herwig, Christian Binsch, Delsi Altenhofen, D. Margriet Ouwens, Pia Marlene Förster, Thorsten Wachtmeister, Karl Köhrer, Torben Stermann, Alexandra Chadt, Stefan Lehr, Tobias Marschall, G. Hege Thoresen, Hadi Al-Hasani
{"title":"Temporal phosphoproteomics reveals circuitry of phased propagation in insulin signaling","authors":"Michael Turewicz, Christine Skagen, Sonja Hartwig, Stephan Majda, Kristina Thedinga, Ralf Herwig, Christian Binsch, Delsi Altenhofen, D. Margriet Ouwens, Pia Marlene Förster, Thorsten Wachtmeister, Karl Köhrer, Torben Stermann, Alexandra Chadt, Stefan Lehr, Tobias Marschall, G. Hege Thoresen, Hadi Al-Hasani","doi":"10.1038/s41467-025-56335-6","DOIUrl":null,"url":null,"abstract":"<p>Insulin is a pleiotropic hormone that elicits its metabolic and mitogenic actions through numerous rapid and reversible protein phosphorylations. The temporal regulation of insulin’s intracellular signaling cascade is highly complex and insufficiently understood. We conduct a time-resolved analysis of the global insulin-regulated phosphoproteome of differentiated human primary myotubes derived from satellite cells of healthy donors using high-resolution mass spectrometry. Identification and tracking of ~13,000 phosphopeptides over time reveal a highly complex and coordinated network of transient phosphorylation and dephosphorylation events that can be allocated to time-phased regulation of distinct and non-overlapping subcellular pathways. Advanced network analysis combining protein-protein-interaction (PPI) resources and investigation of donor variability in relative phosphosite occupancy over time identifies novel putative candidates in non-canonical insulin signaling and key regulatory nodes that are likely essential for signal propagation. Lastly, we find that insulin-regulated phosphorylation of the pre-catalytic spliceosome complex is associated with acute alternative splicing events in the transcriptome of human skeletal muscle. Our findings highlight the temporal relevance of protein phosphorylations and suggest that synchronized contributions of multiple signaling pathways form part of the circuitry for propagating information to insulin effector sites.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"78 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56335-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin is a pleiotropic hormone that elicits its metabolic and mitogenic actions through numerous rapid and reversible protein phosphorylations. The temporal regulation of insulin’s intracellular signaling cascade is highly complex and insufficiently understood. We conduct a time-resolved analysis of the global insulin-regulated phosphoproteome of differentiated human primary myotubes derived from satellite cells of healthy donors using high-resolution mass spectrometry. Identification and tracking of ~13,000 phosphopeptides over time reveal a highly complex and coordinated network of transient phosphorylation and dephosphorylation events that can be allocated to time-phased regulation of distinct and non-overlapping subcellular pathways. Advanced network analysis combining protein-protein-interaction (PPI) resources and investigation of donor variability in relative phosphosite occupancy over time identifies novel putative candidates in non-canonical insulin signaling and key regulatory nodes that are likely essential for signal propagation. Lastly, we find that insulin-regulated phosphorylation of the pre-catalytic spliceosome complex is associated with acute alternative splicing events in the transcriptome of human skeletal muscle. Our findings highlight the temporal relevance of protein phosphorylations and suggest that synchronized contributions of multiple signaling pathways form part of the circuitry for propagating information to insulin effector sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间磷蛋白组学揭示胰岛素信号传导的阶段性传播电路
胰岛素是一种多效性激素,通过许多快速和可逆的蛋白磷酸化来诱导其代谢和有丝分裂作用。胰岛素的细胞内信号级联的时间调节是高度复杂和不充分了解。我们使用高分辨率质谱技术对健康供体卫星细胞衍生的分化人原代肌管的胰岛素调节磷酸化蛋白组进行了时间分辨分析。随着时间的推移,对约13,000个磷酸肽的识别和跟踪揭示了一个高度复杂和协调的瞬时磷酸化和去磷酸化事件网络,可以分配到不同的和不重叠的亚细胞途径的时间阶段调节。结合蛋白-蛋白相互作用(PPI)资源和供体相对磷位点占用随时间变化的研究,先进的网络分析确定了非规范胰岛素信号传导和可能对信号传播至关重要的关键调节节点的新的假定候点。最后,我们发现胰岛素调节的预催化剪接体复合物的磷酸化与人类骨骼肌转录组中的急性选择性剪接事件有关。我们的研究结果强调了蛋白质磷酸化的时间相关性,并表明多种信号通路的同步贡献构成了将信息传播到胰岛素效应位点的电路的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Moiré superlattice-driven bionic hydrogel robot with programmable multifunctionality TWIST1 drives endothelial-to-mesenchymal-transition to stabilize atherosclerotic plaques Anapole-state-enhanced 2D chiral photodetector operating in the near-infrared second window High-spin transition metal atoms drive acidic oxygen evolution reactions Chemistry-driven autonomous nanopore membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1