Gaowei Hu, Chunli Hong, Yingjie Miao, Wenji Wang, Longfei Yin, Xi Luo, Yongqian Fu
{"title":"Zeolitic Imidazole Framework-8 Nanoparticles as an Alternative to Freund's Adjuvant for Klebsiella pneumoniae Recombinant Protein Vaccine","authors":"Gaowei Hu, Chunli Hong, Yingjie Miao, Wenji Wang, Longfei Yin, Xi Luo, Yongqian Fu","doi":"10.1002/bit.28944","DOIUrl":null,"url":null,"abstract":"Vaccination represents a promising approach to combat resistant <i>Klebsiella pneumoniae</i> (KP). However, there is currently no licensed vaccine in the veterinary field. Outer membrane proteins have been proven to possess good immunogenicity, but Freund's adjuvant, which is commonly used to administer protein vaccines, has limitations such as a complicated formulation process as well as a tendency to cause pain and inflammation in animals. Here, we prepared a nano-vaccine based on zeolitic imidazolate framework-8 (ZIF-8)-encapsulated outer membrane protein PhoE and evaluated its efficiency in enhancing humoral and cellular immune responses in BALB/c mice. ZIF-8 nanoparticles rapidly delivered the protein antigen into dendritic cells and successfully activated them. In addition, significantly higher IgG antibody titers, cytokine levels, and splenocyte proliferation indices were founded in mice subcutaneously immunized with PhoE@ZIF-8 than in those receiving free PhoE alone. In a BALB/c mouse model, PhoE@ZIF-8 elicited a strong immune response with improved prophylactic efficacy against KP that was similar to the Freund's adjuvant-formulated vaccine. Based on the superiority of this nano-vaccine with good biocompatibility, inexpensive preparation and higher efficiency of delivering antigen into cells, ZIF-8 can serve as a promising replacement for Freund's adjuvant in research, with a prospective usage for vaccines against bacterial pathogens in the veterinary field.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"9 30 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28944","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccination represents a promising approach to combat resistant Klebsiella pneumoniae (KP). However, there is currently no licensed vaccine in the veterinary field. Outer membrane proteins have been proven to possess good immunogenicity, but Freund's adjuvant, which is commonly used to administer protein vaccines, has limitations such as a complicated formulation process as well as a tendency to cause pain and inflammation in animals. Here, we prepared a nano-vaccine based on zeolitic imidazolate framework-8 (ZIF-8)-encapsulated outer membrane protein PhoE and evaluated its efficiency in enhancing humoral and cellular immune responses in BALB/c mice. ZIF-8 nanoparticles rapidly delivered the protein antigen into dendritic cells and successfully activated them. In addition, significantly higher IgG antibody titers, cytokine levels, and splenocyte proliferation indices were founded in mice subcutaneously immunized with PhoE@ZIF-8 than in those receiving free PhoE alone. In a BALB/c mouse model, PhoE@ZIF-8 elicited a strong immune response with improved prophylactic efficacy against KP that was similar to the Freund's adjuvant-formulated vaccine. Based on the superiority of this nano-vaccine with good biocompatibility, inexpensive preparation and higher efficiency of delivering antigen into cells, ZIF-8 can serve as a promising replacement for Freund's adjuvant in research, with a prospective usage for vaccines against bacterial pathogens in the veterinary field.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.