Bioinspired design of a tissue-engineered ray with machine learning

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2025-02-12 DOI:10.1126/scirobotics.adr6472
John F. Zimmerman, Daniel J. Drennan, James Ikeda, Qianru Jin, Herdeline Ann M. Ardoña, Sean L. Kim, Ryoma Ishii, Kevin Kit Parker
{"title":"Bioinspired design of a tissue-engineered ray with machine learning","authors":"John F. Zimmerman, Daniel J. Drennan, James Ikeda, Qianru Jin, Herdeline Ann M. Ardoña, Sean L. Kim, Ryoma Ishii, Kevin Kit Parker","doi":"10.1126/scirobotics.adr6472","DOIUrl":null,"url":null,"abstract":"In biomimetic design, researchers recreate existing biological structures to form functional devices. For biohybrid robotic swimmers assembled with tissue engineering, this is problematic because most devices operate at different length scales than their naturally occurring counterparts, resulting in reduced performance. To overcome these challenges, here, we demonstrate how machine learning–directed optimization (ML-DO) can be used to inform the design of a biohybrid robot, outperforming other nonlinear optimization techniques, such as Bayesian optimization, in the selection of high-performance geometries. We show how this approach can be used to maximize the thrust generated by a tissue-engineered mobuliform miniray. This results in devices that can swim at the millimeter scale while more closely preserving natural locomotive scaling laws. Overall, this work provides a quantitatively rigorous approach for the engineering design of muscular structure-function relationships in an automated fashion.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"65 1","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1126/scirobotics.adr6472","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In biomimetic design, researchers recreate existing biological structures to form functional devices. For biohybrid robotic swimmers assembled with tissue engineering, this is problematic because most devices operate at different length scales than their naturally occurring counterparts, resulting in reduced performance. To overcome these challenges, here, we demonstrate how machine learning–directed optimization (ML-DO) can be used to inform the design of a biohybrid robot, outperforming other nonlinear optimization techniques, such as Bayesian optimization, in the selection of high-performance geometries. We show how this approach can be used to maximize the thrust generated by a tissue-engineered mobuliform miniray. This results in devices that can swim at the millimeter scale while more closely preserving natural locomotive scaling laws. Overall, this work provides a quantitatively rigorous approach for the engineering design of muscular structure-function relationships in an automated fashion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
Biohybrid hand actuated by multiple human muscle tissues Bioinspired design of a tissue-engineered ray with machine learning Biohybrid hand actuated by multiple human muscle tissues Bioinspired design of a tissue-engineered ray with machine learning A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1