Tumor extracellular vesicle–derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2025-02-12 DOI:10.1126/scitranslmed.adm7269
Feiya Ma, Xia Liu, Yuanqin Zhang, Yan Tao, Lei Zhao, Hazar Abusalamah, Cody Huffman, R. Alex Harbison, Sidharth V. Puram, Yuqi Wang, Guangyong Peng
{"title":"Tumor extracellular vesicle–derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming","authors":"Feiya Ma, Xia Liu, Yuanqin Zhang, Yan Tao, Lei Zhao, Hazar Abusalamah, Cody Huffman, R. Alex Harbison, Sidharth V. Puram, Yuqi Wang, Guangyong Peng","doi":"10.1126/scitranslmed.adm7269","DOIUrl":null,"url":null,"abstract":"The limited success of cancer immunotherapy has posed challenges in treating patients with cancer. However, promising strides could be made with a deeper understanding of the factors that cause T cell dysfunction within the tumor microenvironment and by developing effective strategies to counteract tumor-induced immune suppression. Here, we report that tumor-derived extracellular vesicles (tEVs) can induce senescence and suppression in T cells. Programmed death ligand 1 (PD-L1), a key component within tEVs, induced DNA damage and hyperactive lipid metabolism in both human and mouse T cells. This caused an elevated expression of lipid metabolic enzymes and an increase in cholesterol and lipid droplet formation, leading to cellular senescence. At a molecular level, PD-L1 derived from tEVs activated the cAMP-response element binding protein (CREB) and signal transducer and activator of transcription (STAT) signaling, which promoted lipid metabolism and facilitated senescence in human and mouse T cells. Inhibiting EV synthesis in tumors or blocking CREB signaling, cholesterol synthesis, and lipid droplet formation in effector T cells averted the tEV-mediated T cell senescence in vitro and in vivo in cell adoptive transfer and melanoma mouse models. The same treatments also bolstered the antitumor efficacy of adoptive transfer T cell therapy and anti–PD-L1 checkpoint immunotherapy in both human and mouse melanoma models. These studies identified mechanistic links between tumor-mediated immune suppression and potential immunotherapy resistance, and they provide new strategies for cancer immunotherapy.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"70 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adm7269","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The limited success of cancer immunotherapy has posed challenges in treating patients with cancer. However, promising strides could be made with a deeper understanding of the factors that cause T cell dysfunction within the tumor microenvironment and by developing effective strategies to counteract tumor-induced immune suppression. Here, we report that tumor-derived extracellular vesicles (tEVs) can induce senescence and suppression in T cells. Programmed death ligand 1 (PD-L1), a key component within tEVs, induced DNA damage and hyperactive lipid metabolism in both human and mouse T cells. This caused an elevated expression of lipid metabolic enzymes and an increase in cholesterol and lipid droplet formation, leading to cellular senescence. At a molecular level, PD-L1 derived from tEVs activated the cAMP-response element binding protein (CREB) and signal transducer and activator of transcription (STAT) signaling, which promoted lipid metabolism and facilitated senescence in human and mouse T cells. Inhibiting EV synthesis in tumors or blocking CREB signaling, cholesterol synthesis, and lipid droplet formation in effector T cells averted the tEV-mediated T cell senescence in vitro and in vivo in cell adoptive transfer and melanoma mouse models. The same treatments also bolstered the antitumor efficacy of adoptive transfer T cell therapy and anti–PD-L1 checkpoint immunotherapy in both human and mouse melanoma models. These studies identified mechanistic links between tumor-mediated immune suppression and potential immunotherapy resistance, and they provide new strategies for cancer immunotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade Tumor extracellular vesicle–derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming In vivo expansion of gene-targeted hepatocytes through transient inhibition of an essential gene Antisense oligonucleotide–mediated MSH3 suppression reduces somatic CAG repeat expansion in Huntington’s disease iPSC–derived striatal neurons Intestinal epithelium–derived IL-34 reprograms macrophages to mitigate gastrointestinal tract graft-versus-host disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1