Caio Nascimento, Drew Jamieson, Matthew McQuinn and Marilena Loverde
{"title":"A semi-analytic estimate for the effective sound speed counterterm in the EFTofLSS","authors":"Caio Nascimento, Drew Jamieson, Matthew McQuinn and Marilena Loverde","doi":"10.1088/1475-7516/2025/02/023","DOIUrl":null,"url":null,"abstract":"The Effective Field Theory of Large Scale Structure (EFTofLSS) has found tremendous success as a perturbative framework for the evolution of large scale structure, and it is now routinely used to compare theoretical predictions against cosmological observations. The model for the total matter field includes one nuisance parameter at 1-loop order, the effective sound speed, which can be extracted by matching the EFT to full N-body simulations. In this work we first leverage the Layzer-Irvine cosmic energy equation to show that the equation of state can be exactly computed with knowledge of the fully nonlinear power spectrum. When augmented with separate universe methods, we show one can estimate the effective sound speed. This estimate is in good agreement with simulation results, with errors at the few tens of percent level. We apply our method to investigate the cosmology dependence of the effective sound speed and to shed light on what cosmic structures shape its value.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Effective Field Theory of Large Scale Structure (EFTofLSS) has found tremendous success as a perturbative framework for the evolution of large scale structure, and it is now routinely used to compare theoretical predictions against cosmological observations. The model for the total matter field includes one nuisance parameter at 1-loop order, the effective sound speed, which can be extracted by matching the EFT to full N-body simulations. In this work we first leverage the Layzer-Irvine cosmic energy equation to show that the equation of state can be exactly computed with knowledge of the fully nonlinear power spectrum. When augmented with separate universe methods, we show one can estimate the effective sound speed. This estimate is in good agreement with simulation results, with errors at the few tens of percent level. We apply our method to investigate the cosmology dependence of the effective sound speed and to shed light on what cosmic structures shape its value.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.