Hongbo Li , Shiqin Long , Shoushu Wei , Qingze Chen , Xiaoju Lin , Xiaoliang Liang , Jianxi Zhu , Runliang Zhu
{"title":"Green remediation of REEs-contaminated soil by biodegradable chelators with optimization and risk assessment","authors":"Hongbo Li , Shiqin Long , Shoushu Wei , Qingze Chen , Xiaoju Lin , Xiaoliang Liang , Jianxi Zhu , Runliang Zhu","doi":"10.1016/j.envpol.2025.125841","DOIUrl":null,"url":null,"abstract":"<div><div>The omnipresence of rare earth elements (REEs) in the environment, driven by their extensive industrial applications and common occurrence in some weathered crusts, has raised significant concerns as emerging pollutants. Soil washing has been recognized as an effective approach to remediate REEs-contaminated soils. However, traditional washing agents frequently lead to soil acidification and salinization, adversely affecting soil microbial communities and plant growth. This study explored the use of biodegradable chelators (BCs)—specifically N,N-bis(carboxymethyl)-L-glutamic acid (GLDA), iminodisuccinic acid (ISA), and polyaspartic acid (PASP)—as alternatives for removing REEs from contaminated agricultural soils. Our findings demonstrated that the removal efficiency of REEs positively correlates with BCs concentration, liquid-to-solid ratio, and washing time, while showing a negative correlation with solution pH. Through response surface analysis, we determined the optimal parameters for the washing process, revealing that GLDA, ISA, and PASP achieved total REEs removal efficiencies of 50.8%, 40.5%, and 23.2%, respectively. Statistical analysis confirmed that the concentration of BCs was the primary factor influencing washing effectiveness. Moreover, washing with BCs significantly removed reducible REEs—those bound to iron/manganese oxides—thereby decreasing the mobility and bioavailability of REEs in soil. The reduction in bioavailable REEs significantly lowered the environmental risk associated with contaminated soil. Notably, the activity of soil enzymes improved post-washing with BCs, indicating a positive impact on soil health. This study provides valuable insights into the remediation of REEs-contaminated soils using BCs, with GLDA emerging as a particularly effective agent.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"369 ","pages":"Article 125841"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125002143","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The omnipresence of rare earth elements (REEs) in the environment, driven by their extensive industrial applications and common occurrence in some weathered crusts, has raised significant concerns as emerging pollutants. Soil washing has been recognized as an effective approach to remediate REEs-contaminated soils. However, traditional washing agents frequently lead to soil acidification and salinization, adversely affecting soil microbial communities and plant growth. This study explored the use of biodegradable chelators (BCs)—specifically N,N-bis(carboxymethyl)-L-glutamic acid (GLDA), iminodisuccinic acid (ISA), and polyaspartic acid (PASP)—as alternatives for removing REEs from contaminated agricultural soils. Our findings demonstrated that the removal efficiency of REEs positively correlates with BCs concentration, liquid-to-solid ratio, and washing time, while showing a negative correlation with solution pH. Through response surface analysis, we determined the optimal parameters for the washing process, revealing that GLDA, ISA, and PASP achieved total REEs removal efficiencies of 50.8%, 40.5%, and 23.2%, respectively. Statistical analysis confirmed that the concentration of BCs was the primary factor influencing washing effectiveness. Moreover, washing with BCs significantly removed reducible REEs—those bound to iron/manganese oxides—thereby decreasing the mobility and bioavailability of REEs in soil. The reduction in bioavailable REEs significantly lowered the environmental risk associated with contaminated soil. Notably, the activity of soil enzymes improved post-washing with BCs, indicating a positive impact on soil health. This study provides valuable insights into the remediation of REEs-contaminated soils using BCs, with GLDA emerging as a particularly effective agent.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.