Ya-lin Zhao, Yong Li, Dan-dan Guo, Xue-jia Chen, Ke Cao, Jin-long Wu, Wei-chao Fang, Chang-wen Chen, Xin-wei Wang, Li-rong Wang
{"title":"Spatiotemporally transcriptomic analyses of floral buds reveal the high-resolution landscape of flower development and dormancy regulation in peach","authors":"Ya-lin Zhao, Yong Li, Dan-dan Guo, Xue-jia Chen, Ke Cao, Jin-long Wu, Wei-chao Fang, Chang-wen Chen, Xin-wei Wang, Li-rong Wang","doi":"10.1093/hr/uhaf029","DOIUrl":null,"url":null,"abstract":"The spatiotemporal transcriptome dataset reported here provides the peach flower bud’s gene expression atlas at spatiotemporal resolution level by 10x genomics Visium platform. This dataset can be used to define the transcript accumulation for any interesting genes across several flower bud cells by three peach flower bud samples during the activity-dormancy period, providing valuable insight into gene expression profiling and developmental stages under different environmental contexts or conditions. Importantly, we found that different cell types are related to specific regulatory programs, including signal transduction, environment and stress responses, and flower development. Our research provides insight into the transcriptomic landscape of the key cell types for flower buds and opens new avenues to study cell-type specification, function, and differentiation in Rosaceae fruit trees. A series of pivotal genes (e.g., AMS, MS188, MS1) for flower bud development were identified, these works provided a valuable reference for activity-dormancy transition in perennial deciduous fruit trees.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"14 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf029","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The spatiotemporal transcriptome dataset reported here provides the peach flower bud’s gene expression atlas at spatiotemporal resolution level by 10x genomics Visium platform. This dataset can be used to define the transcript accumulation for any interesting genes across several flower bud cells by three peach flower bud samples during the activity-dormancy period, providing valuable insight into gene expression profiling and developmental stages under different environmental contexts or conditions. Importantly, we found that different cell types are related to specific regulatory programs, including signal transduction, environment and stress responses, and flower development. Our research provides insight into the transcriptomic landscape of the key cell types for flower buds and opens new avenues to study cell-type specification, function, and differentiation in Rosaceae fruit trees. A series of pivotal genes (e.g., AMS, MS188, MS1) for flower bud development were identified, these works provided a valuable reference for activity-dormancy transition in perennial deciduous fruit trees.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.