Sono-Piezo-Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-02-11 DOI:10.1002/adfm.202425784
Yue Jiang, Jiajun Zhang, Hongyang Ma, Shujie Zhou, Hsun-Yen Lin, Sajjad S. Mofarah, Mark Lockrey, Teng Lu, Hangjuan Ren, Xiaoran Zheng, Maichael Gunawan, Suchen Huang, Yu-Chun Huang, Fenglin Zhuo, Dali Ji, Judy N. Hart, Yun Liu, Jyh Ming Wu, Muthupandian Ashokkumar, Danyang Wang, Pramod Koshy, Charles C. Sorrell
{"title":"Sono-Piezo-Photosynthesis of Ethylene and Acetylene from Bioethanol under Ambient Conditions","authors":"Yue Jiang,&nbsp;Jiajun Zhang,&nbsp;Hongyang Ma,&nbsp;Shujie Zhou,&nbsp;Hsun-Yen Lin,&nbsp;Sajjad S. Mofarah,&nbsp;Mark Lockrey,&nbsp;Teng Lu,&nbsp;Hangjuan Ren,&nbsp;Xiaoran Zheng,&nbsp;Maichael Gunawan,&nbsp;Suchen Huang,&nbsp;Yu-Chun Huang,&nbsp;Fenglin Zhuo,&nbsp;Dali Ji,&nbsp;Judy N. Hart,&nbsp;Yun Liu,&nbsp;Jyh Ming Wu,&nbsp;Muthupandian Ashokkumar,&nbsp;Danyang Wang,&nbsp;Pramod Koshy,&nbsp;Charles C. Sorrell","doi":"10.1002/adfm.202425784","DOIUrl":null,"url":null,"abstract":"<p>The catalytic conversion of bioethanol to ethylene (C<sub>2</sub>H<sub>4</sub>) and acetylene (C<sub>2</sub>H<sub>2</sub>) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C<sub>2</sub> hydrocarbons rely on energy- and carbon-intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low-energy, bioethanol-conversion strategy operating at room temperature and ambient pressure using sono-piezo-photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core-shell microstructure achieved outstanding C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>2</sub> production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo-photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono-piezo-photocatalytic conversion pathways, showing significant reductions in energy barriers for C<sub>2</sub>H<sub>4</sub> (22.0 kcal mol<sup>−1</sup>) and C<sub>2</sub>H<sub>2</sub> (48.0 kcal mol<sup>−1</sup>) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 27","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202425784","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202425784","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic conversion of bioethanol to ethylene (C2H4) and acetylene (C2H2) offers a transformative approach to sustainable production of two industrial cornerstones for organic compound and polymer syntheses, thereby offering significant economic and environmental advantages. In contrast, current methods for the synthesis of these C2 hydrocarbons rely on energy- and carbon-intensive processes that require high temperatures and pressures. The present work addresses these limitations with a novel, low-energy, bioethanol-conversion strategy operating at room temperature and ambient pressure using sono-piezo-photocatalysts. A novel heterostructure of graphene oxide fragments (GO) and sodium bismuth titanate (NBT) within a core-shell microstructure achieved outstanding C2H4 and C2H2 production rates of 134.1 and 55.5 µmol/g/h, respectively. The conversion mechanism is driven by (1) bubble collapse during ultrasound irradiation, generating localized high temperatures (≈4000 K) and pressures (≈100 MPa), and (2) piezo-photocatalytic tuning of GO/NBT by enhanced charge separation and transfer. DFT simulations revealed detailed sono-piezo-photocatalytic conversion pathways, showing significant reductions in energy barriers for C2H4 (22.0 kcal mol−1) and C2H2 (48.0 kcal mol−1) formation. These findings emphasize the critical role of the catalyst in cleaving both C─H and C─O bonds effectively, leading to the desired product formation.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境条件下生物乙醇中乙烯和乙炔的声压光合作用
生物乙醇催化转化为乙烯(C2H4)和乙炔(C2H2)为有机化合物和聚合物合成的两种工业基石的可持续生产提供了一种变革性的方法,从而提供了显着的经济和环境优势。相比之下,目前合成这些C2碳氢化合物的方法依赖于需要高温和高压的能源和碳密集型过程。目前的工作通过使用声压电光催化剂在室温和环境压力下操作的新颖,低能耗的生物乙醇转化策略解决了这些限制。氧化石墨烯(GO)和钛酸铋钠(NBT)的新型异质结构在核壳结构中获得了出色的C2H4和C2H2产率,分别为134.1和55.5µmol/g/h。该转化机制的驱动机制是:(1)超声照射过程中气泡破裂,产生局部高温(≈4000 K)和压力(≈100 MPa);(2)通过增强电荷分离和转移对GO/NBT进行压电光催化调谐。DFT模拟揭示了详细的声压电光催化转化途径,表明C2H4 (22.0 kcal mol−1)和C2H2 (48.0 kcal mol−1)形成的能垒显著降低。这些发现强调了催化剂在有效切割C─H和C─O键中所起的关键作用,从而导致所需产物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Stabilizing Spent LiCoO 2 Through Interface Construction: A Sustainable Route to High‐Performance Cathode Regeneration Polymorph with Triphase Heterojunctions Enhancing Interfacial Stability for Long-Lasting Quasi-Solid-State Lithium Metal Batteries Conductive MOF-Based NiZn Dual Atom Catalyst for Boosted Photoreduction of Diluted CO2: The Effects of Inert Sites Robust and Conductive Polymer Electrolytes via Solvent-Guided Hierarchical Network Formation Uniform SEI design via Solvent Competitions for Stable Anode-Free Zinc Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1