Viktoriia Morad, Taehee Kim, Sebastian Sabisch, Simon C. Boehme, Simone Delessert, Nadine J. Schrenker, Sara Bals, Gabriele Rainò, Maksym V. Kovalenko
{"title":"Highly Emissive Colloidal Nanocrystals of a “2.5-Dimensional” Monomethylhydrazinium Lead Bromide","authors":"Viktoriia Morad, Taehee Kim, Sebastian Sabisch, Simon C. Boehme, Simone Delessert, Nadine J. Schrenker, Sara Bals, Gabriele Rainò, Maksym V. Kovalenko","doi":"10.1021/jacs.4c16698","DOIUrl":null,"url":null,"abstract":"The ability to control materials at the nanoscale has advanced optoelectronic devices, such as LEDs, displays, and quantum light sources. A new frontier is controlling exciton properties beyond quantum size confinement, achieved through single monolayer heterostructures. In the prototypical example of transition metal dichalcogenide heterostructures and moiré superlattices, excitons with long lifetimes, strong binding energies, and tunable dipole moments have been demonstrated and are ideal for optoelectronics and quantum applications. Expanding this material platform is crucial for further progress. This study introduces colloidal nanocrystals (NCs) of monomethylhydrazinium lead bromide (MMHPbBr<sub>3</sub>), a novel lead halide perovskite (LHP) with a unique “2.5-dimensional” electronic structure. While the spatial dimensionality of the NC extends in all three dimensions, these NCs exhibit excitonic properties intermediate between 2D and 3D LHPs. Density functional theory (DFT) calculations show that MMHPbBr<sub>3</sub> features spatially separated electron and hole wave functions, with electrons delocalized in 3D and holes confined in 2D monolayers. Synthesized via a rapid colloidal method, these NCs were characterized by using techniques such as 4D-STEM and nuclear magnetic resonance, confirming their monoclinic structure. Optical analysis revealed size-dependent properties and 3D quantum confinement effects, with three distinct photoluminescence (PL) bands at cryogenic temperatures corresponding to excitons with varying interlayer coupling. PL spectroscopy of single MMHPbBr<sub>3</sub> NCs reveals their photon emission statistics, expanding their potential for unconventional quantum material designs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"65 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to control materials at the nanoscale has advanced optoelectronic devices, such as LEDs, displays, and quantum light sources. A new frontier is controlling exciton properties beyond quantum size confinement, achieved through single monolayer heterostructures. In the prototypical example of transition metal dichalcogenide heterostructures and moiré superlattices, excitons with long lifetimes, strong binding energies, and tunable dipole moments have been demonstrated and are ideal for optoelectronics and quantum applications. Expanding this material platform is crucial for further progress. This study introduces colloidal nanocrystals (NCs) of monomethylhydrazinium lead bromide (MMHPbBr3), a novel lead halide perovskite (LHP) with a unique “2.5-dimensional” electronic structure. While the spatial dimensionality of the NC extends in all three dimensions, these NCs exhibit excitonic properties intermediate between 2D and 3D LHPs. Density functional theory (DFT) calculations show that MMHPbBr3 features spatially separated electron and hole wave functions, with electrons delocalized in 3D and holes confined in 2D monolayers. Synthesized via a rapid colloidal method, these NCs were characterized by using techniques such as 4D-STEM and nuclear magnetic resonance, confirming their monoclinic structure. Optical analysis revealed size-dependent properties and 3D quantum confinement effects, with three distinct photoluminescence (PL) bands at cryogenic temperatures corresponding to excitons with varying interlayer coupling. PL spectroscopy of single MMHPbBr3 NCs reveals their photon emission statistics, expanding their potential for unconventional quantum material designs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.