Tradeoff between Mechanical Strength and Electrical Conductivity of MXene Films by Nacre-Inspired Subtractive Manufacturing

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-02-12 DOI:10.1002/smll.202411329
Chao Rong, Ting Su, Tianshu Chu, Mingliang Zhu, Bowei Zhang, Fu-Zhen Xuan
{"title":"Tradeoff between Mechanical Strength and Electrical Conductivity of MXene Films by Nacre-Inspired Subtractive Manufacturing","authors":"Chao Rong, Ting Su, Tianshu Chu, Mingliang Zhu, Bowei Zhang, Fu-Zhen Xuan","doi":"10.1002/smll.202411329","DOIUrl":null,"url":null,"abstract":"Traditional strategies, by additive manufacturing, for integrating monolayer Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets into macroscopic films with binders can effectively improve their mechanical strength, but the electrical conductivity is often sacrificed. Herein, inspired by the aligned nano-compacted feature of nacre, a flexible subtractive manufacturing strategy is reported to squeeze the interlayer 2D spacings by removing the nanoconfined water and interface terminations, leading to the improvement of mechanical strength and stability of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> layered films without sacrificing the electrical conductivity. After the vacuum annealing of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> films at 300 °C (A300), the interlayer 2D spacing decreased ≈0.1 nm with the surface functional groups (═O, ─OH, ─F) and interlayer water molecules greatly removed. The tensile strength (95.59 MPa) and Young's modulus (9.59 GPa) of A300 are ≈3 and ≈2 times improved, respectively. Moreover, the A300 films maintain a metallic electrical conductivity (2276 S cm<sup>−1</sup>) and show greatly enhanced stability. Compared to the original films, the mechanical strength of the A300 films is enhanced by increasing the interlayer friction and energy dissipation with the decrease of interlayer 2D spacings. This work provides a new way for engineering the self-assembled films with more functions for broad applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"29 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411329","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional strategies, by additive manufacturing, for integrating monolayer Ti3C2Tx nanosheets into macroscopic films with binders can effectively improve their mechanical strength, but the electrical conductivity is often sacrificed. Herein, inspired by the aligned nano-compacted feature of nacre, a flexible subtractive manufacturing strategy is reported to squeeze the interlayer 2D spacings by removing the nanoconfined water and interface terminations, leading to the improvement of mechanical strength and stability of Ti3C2Tx layered films without sacrificing the electrical conductivity. After the vacuum annealing of Ti3C2Tx films at 300 °C (A300), the interlayer 2D spacing decreased ≈0.1 nm with the surface functional groups (═O, ─OH, ─F) and interlayer water molecules greatly removed. The tensile strength (95.59 MPa) and Young's modulus (9.59 GPa) of A300 are ≈3 and ≈2 times improved, respectively. Moreover, the A300 films maintain a metallic electrical conductivity (2276 S cm−1) and show greatly enhanced stability. Compared to the original films, the mechanical strength of the A300 films is enhanced by increasing the interlayer friction and energy dissipation with the decrease of interlayer 2D spacings. This work provides a new way for engineering the self-assembled films with more functions for broad applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过珍珠质启发的减材制造技术实现 MXene 薄膜机械强度与导电性之间的权衡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Issue Information Biomimetic Superhydrophobic Surfaces by Nanoarchitectonics with Natural Sunflower Pollen (Small 7/2025) Interdisciplinary Hybrid Solar-Driven Evaporators: Theoretical Framework of Fundamental Mechanisms and Applications (Small 7/2025) Droplet Friction on Superhydrophobic Surfaces Scales With Liquid-Solid Contact Fraction (Small 7/2025) Honeycomb ZIF-67 Membrane With Hierarchical Channels for High-Permeance Gas Separation (Small 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1