Alkaline Adjuvant Regulates Proteolytic Activity of Macrophages for Antigen Cross-Presentation and Potentiates Radioimmunotherapy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-11 DOI:10.1002/adma.202416690
Bei Li, Yan Tan, Josh Haipeng Lei, Min Deng, Xinwang Yu, Xinyi Wang, Lek Man Lei, Lin He, Chu-Xia Deng, Yunlu Dai
{"title":"Alkaline Adjuvant Regulates Proteolytic Activity of Macrophages for Antigen Cross-Presentation and Potentiates Radioimmunotherapy","authors":"Bei Li, Yan Tan, Josh Haipeng Lei, Min Deng, Xinwang Yu, Xinyi Wang, Lek Man Lei, Lin He, Chu-Xia Deng, Yunlu Dai","doi":"10.1002/adma.202416690","DOIUrl":null,"url":null,"abstract":"Failures of radiotherapy (RT) in adaptive antitumor immunomodulation often associate with recruited tissue-repairing macrophages. Although training these macrophages to phagocytose post-RT cancer cells reverses their protumoral performance, engulfed tumor antigens are severely underrated. In fact, regulating the processing and presentation of tumor antigens, a key determinant of tumor immunogenicity, can fundamentally affect adaptive immune responses. Here it is reported that a simple Alum-like adjuvant (MgAl-based hydrotalcite, bLDH) improves radioimmunotherapy via inducing antigen cross-presentation by macrophages, independent of phenotypes. It is identified that cytidine monophosphate guanosine oligodeoxynucleotide engenders macrophages to phagocytose irradiated cancer cells. However, as semiprofessional antigen-presenting cells, macrophages possess powerful proteolytic function that is detrimental to antigen presentation. The administration of alkaline bLDH intriguingly relieves the activity of phagolysosomal proteases with acidic pH optima by preventing phagosomal acidification resulting from the vacuolar-type ATPase proton pump. The adjuvant-modulated phagolysosomes thus limit antigen degradation and enhance tumor antigen cross-presentation over tenfold. To examine from an in vivo breast tumor model, trained macrophages successfully cross-prime antigen-specific CD8<sup>+</sup> T cells and curb RT-associated metastasis. The findings propose to pay close attention to the effect of adjuvants on precision immunotherapy and highlight the positive contribution of cross-presenting macrophages in radioimmunotherapy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"161 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416690","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Failures of radiotherapy (RT) in adaptive antitumor immunomodulation often associate with recruited tissue-repairing macrophages. Although training these macrophages to phagocytose post-RT cancer cells reverses their protumoral performance, engulfed tumor antigens are severely underrated. In fact, regulating the processing and presentation of tumor antigens, a key determinant of tumor immunogenicity, can fundamentally affect adaptive immune responses. Here it is reported that a simple Alum-like adjuvant (MgAl-based hydrotalcite, bLDH) improves radioimmunotherapy via inducing antigen cross-presentation by macrophages, independent of phenotypes. It is identified that cytidine monophosphate guanosine oligodeoxynucleotide engenders macrophages to phagocytose irradiated cancer cells. However, as semiprofessional antigen-presenting cells, macrophages possess powerful proteolytic function that is detrimental to antigen presentation. The administration of alkaline bLDH intriguingly relieves the activity of phagolysosomal proteases with acidic pH optima by preventing phagosomal acidification resulting from the vacuolar-type ATPase proton pump. The adjuvant-modulated phagolysosomes thus limit antigen degradation and enhance tumor antigen cross-presentation over tenfold. To examine from an in vivo breast tumor model, trained macrophages successfully cross-prime antigen-specific CD8+ T cells and curb RT-associated metastasis. The findings propose to pay close attention to the effect of adjuvants on precision immunotherapy and highlight the positive contribution of cross-presenting macrophages in radioimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO3− to Urea at High Current Density Giant and Anisotropic Enhancement of Spin-Charge Conversion in Graphene-Based Quantum System High-Entropy 1T-Phase Quantum Sheets of Transition-Metal Disulfides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1