Albert Mathew, Rebecca Aschwanden, Aditya Tripathi, Piyush Jangid, Basudeb Sain, Thomas Zentgraf, Sergey Kruk
{"title":"Nonreciprocal Metasurfaces with Epsilon-Near-Zero Materials","authors":"Albert Mathew, Rebecca Aschwanden, Aditya Tripathi, Piyush Jangid, Basudeb Sain, Thomas Zentgraf, Sergey Kruk","doi":"10.1021/acs.nanolett.4c06188","DOIUrl":null,"url":null,"abstract":"Nonreciprocal optics enables the asymmetric transmission of light when its sources and detectors are exchanged. A canonical example─optical isolator─enables light propagation in only one direction, similar to how electrical diodes enable unidirectional flow of electric current. Nonreciprocal optics today, unlike nonreciprocal electronics, remains bulky. Recently, nonlinear metasurfaces opened a pathway to strong optical nonreciprocity on the nanoscale. However, demonstrations to date were based on optically slow nonlinearities involving thermal effects or phase transition materials. In this work, we demonstrate a nonreciprocal metasurface with an ultrafast optical response based on indium tin oxide in its epsilon-near-zero regime. It operates in the spectral range of 1200–1300 nm with incident power densities of 40–70 GW/cm<sup>2</sup>. Furthermore, the nonreciprocity of the metasurface extends to both amplitude and phase of the forward/backward transmission, opening a pathway to nonreciprocal wavefront control at the nanoscale.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"58 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06188","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonreciprocal optics enables the asymmetric transmission of light when its sources and detectors are exchanged. A canonical example─optical isolator─enables light propagation in only one direction, similar to how electrical diodes enable unidirectional flow of electric current. Nonreciprocal optics today, unlike nonreciprocal electronics, remains bulky. Recently, nonlinear metasurfaces opened a pathway to strong optical nonreciprocity on the nanoscale. However, demonstrations to date were based on optically slow nonlinearities involving thermal effects or phase transition materials. In this work, we demonstrate a nonreciprocal metasurface with an ultrafast optical response based on indium tin oxide in its epsilon-near-zero regime. It operates in the spectral range of 1200–1300 nm with incident power densities of 40–70 GW/cm2. Furthermore, the nonreciprocity of the metasurface extends to both amplitude and phase of the forward/backward transmission, opening a pathway to nonreciprocal wavefront control at the nanoscale.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.