Moritz Ertelt, Rocco Moretti, Jens Meiler, Clara T. Schoeder
{"title":"Self-supervised machine learning methods for protein design improve sampling but not the identification of high-fitness variants","authors":"Moritz Ertelt, Rocco Moretti, Jens Meiler, Clara T. Schoeder","doi":"10.1126/sciadv.adr7338","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardization, and are therefore hard to objectively compare. In this study, we established a streamlined and diverse toolbox for methods that predict amino acid probabilities inside the Rosetta software framework that allows for the side-by-side comparison of these models. Subsequently, existing protein fitness landscapes were used to benchmark novel ML methods in realistic protein design settings. We focused on the traditional problems of protein design: sampling and scoring. A major finding of our study is that ML approaches are better at purging the sampling space from deleterious mutations. Nevertheless, scoring resulting mutations without model fine-tuning showed no clear improvement over scoring with Rosetta. We conclude that ML now complements, rather than replaces, biophysical methods in protein design.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"7 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr7338","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardization, and are therefore hard to objectively compare. In this study, we established a streamlined and diverse toolbox for methods that predict amino acid probabilities inside the Rosetta software framework that allows for the side-by-side comparison of these models. Subsequently, existing protein fitness landscapes were used to benchmark novel ML methods in realistic protein design settings. We focused on the traditional problems of protein design: sampling and scoring. A major finding of our study is that ML approaches are better at purging the sampling space from deleterious mutations. Nevertheless, scoring resulting mutations without model fine-tuning showed no clear improvement over scoring with Rosetta. We conclude that ML now complements, rather than replaces, biophysical methods in protein design.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.