Self-supervised machine learning methods for protein design improve sampling but not the identification of high-fitness variants

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-02-12 DOI:10.1126/sciadv.adr7338
Moritz Ertelt, Rocco Moretti, Jens Meiler, Clara T. Schoeder
{"title":"Self-supervised machine learning methods for protein design improve sampling but not the identification of high-fitness variants","authors":"Moritz Ertelt, Rocco Moretti, Jens Meiler, Clara T. Schoeder","doi":"10.1126/sciadv.adr7338","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardization, and are therefore hard to objectively compare. In this study, we established a streamlined and diverse toolbox for methods that predict amino acid probabilities inside the Rosetta software framework that allows for the side-by-side comparison of these models. Subsequently, existing protein fitness landscapes were used to benchmark novel ML methods in realistic protein design settings. We focused on the traditional problems of protein design: sampling and scoring. A major finding of our study is that ML approaches are better at purging the sampling space from deleterious mutations. Nevertheless, scoring resulting mutations without model fine-tuning showed no clear improvement over scoring with Rosetta. We conclude that ML now complements, rather than replaces, biophysical methods in protein design.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"7 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr7338","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardization, and are therefore hard to objectively compare. In this study, we established a streamlined and diverse toolbox for methods that predict amino acid probabilities inside the Rosetta software framework that allows for the side-by-side comparison of these models. Subsequently, existing protein fitness landscapes were used to benchmark novel ML methods in realistic protein design settings. We focused on the traditional problems of protein design: sampling and scoring. A major finding of our study is that ML approaches are better at purging the sampling space from deleterious mutations. Nevertheless, scoring resulting mutations without model fine-tuning showed no clear improvement over scoring with Rosetta. We conclude that ML now complements, rather than replaces, biophysical methods in protein design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Artificial intelligence-powered 3D analysis of video-based caregiver-child interactions. Switching polariton screening in MoS2 microcavity toward polaritonics. Alexander Pines and the end of an era. Humoral responses to SARS-CoV-2 vaccine in vasculitis-related immune suppression. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1