Yutong Chen , Dalin Zhang , Yue Lin , Di Wang , Zhenyu Feng , Wenxi Tian , S.Z. Qiu , G.H. Su
{"title":"Research status in safety analysis of steam generator tube rupture accident in lead-based fast reactors – A review","authors":"Yutong Chen , Dalin Zhang , Yue Lin , Di Wang , Zhenyu Feng , Wenxi Tian , S.Z. Qiu , G.H. Su","doi":"10.1016/j.nucengdes.2025.113904","DOIUrl":null,"url":null,"abstract":"<div><div>Apart from the inherent advantages including high thermal efficiency, low operating pressure, stable coolant chemical properties, large heat capacity and easy modularization, Lead-based Fast Reactors (LFRs) are capable of transmuting long-live nuclear wastes while breeding fissile nuclides, therefore it is recognized as one of the most promising Gen-IV reactor concepts. In most existing LFR design schemes, the intermedia loop is not utilized, making the reactor more vulnerable to the risk of Steam Generator Tube Rupture (SGTR) accident. As a result, safety analysis of SGTR accident of LFR has become a major concern over the last decades. In this paper, the key phenomena at different stages of SGTR accident of LFR are categorized, the theoretical and experimental research status are reviewed, and the corresponding countermeasures are suggested. Focused on the four typical development stages of SGTR accident of LFR, namely the pressure wave propagating stage, the multiphase mixture expanding stage, the primary coolant (molten lead) and secondary coolant (usually pressurized water) interacting stage and the steam bubble migration stage, the research methods and recent progress are summarized. Besides, investigations on phenomena like rapid depressurization and two-phase critical flow that simultaneously occur in the secondary side are discussed subsequently. For those issues, the latest research activities, existing problems and future outlooks are demonstrated. This paper could provide useful reference for design and safety analysis issues of LFR SGTR accidents.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"433 ","pages":"Article 113904"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325000810","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Apart from the inherent advantages including high thermal efficiency, low operating pressure, stable coolant chemical properties, large heat capacity and easy modularization, Lead-based Fast Reactors (LFRs) are capable of transmuting long-live nuclear wastes while breeding fissile nuclides, therefore it is recognized as one of the most promising Gen-IV reactor concepts. In most existing LFR design schemes, the intermedia loop is not utilized, making the reactor more vulnerable to the risk of Steam Generator Tube Rupture (SGTR) accident. As a result, safety analysis of SGTR accident of LFR has become a major concern over the last decades. In this paper, the key phenomena at different stages of SGTR accident of LFR are categorized, the theoretical and experimental research status are reviewed, and the corresponding countermeasures are suggested. Focused on the four typical development stages of SGTR accident of LFR, namely the pressure wave propagating stage, the multiphase mixture expanding stage, the primary coolant (molten lead) and secondary coolant (usually pressurized water) interacting stage and the steam bubble migration stage, the research methods and recent progress are summarized. Besides, investigations on phenomena like rapid depressurization and two-phase critical flow that simultaneously occur in the secondary side are discussed subsequently. For those issues, the latest research activities, existing problems and future outlooks are demonstrated. This paper could provide useful reference for design and safety analysis issues of LFR SGTR accidents.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.